
 Advanced search

Linux Journal Issue #101/September 2002

Features

What Has 1.1 Terabytes, 9,503 BogoMips and Flies? by Don Marti
With a collection of hot hardware, Mr. Marti shows that you can't
judge a box by its color.

Indepth

Coding between Mouse and Keyboard, Part I by Patricia Jung
In the first part of this two-part article, Jung provides a working
example of building GUI apps with Qt.

Bring an Atomic Clock to Your Home with Chrony by Fred Mora
Be the first on your block to have atomic clock accuracly on your
desktop!

CVS homedir by Joey Hess
Ever thought of living your life in CVS? Hess shows how.

Linux Multimedia with Pd and GEM: a User's Report by Dave Phillips
Phillips reveals how the Pd sound synthesis and processing
environment works to make Linux a viable multimedia platform.

Free Software in Brazil by Jon Hall
maddog gives the lowdown on some impressive Brazilian free
software projects.

2002 Editors' Choice Awards
Nineteen categories and 21 winners—read all about it.

Embedded

Embedded Perspective by Rick Lehrbaum

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/101/6175.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/4721.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/5657.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/5976.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/5994.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6125.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6181.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6168.html

Fire, Brimstone and Real-Time Linux
Memory Leak Detection in Embedded Systems by Cal Erickson

Erickson discusses some of the best tools for memory leak
detection for embedded programmers.

In-Memory Database Systems by Steve Graves
Graves demonstrates the advantages of in-memory databases
in embedded environments.

Toolbox

Kernel Korner The Kernel Hacker's Guide to Source Code Control
by Greg Kroah-Hartman
At the Forge Introducing AOLserver by Reuven M. Lerner
Cooking with Linux The Ultimate (but Small) Linux Box! by Marcel
Gagné
Paranoid Peguin Q&A with Chris Wysopal (Weld Pond) by Mick Bauer

Columns

Focus on Software Ultimate Machines by David A. Bandel
Linux for Suits Grass Roots WiFi in London by Doc Searls

Grass Roots WiFi in London
Geek Law Allocation of the Risks by Lawrence Rosen

Departments

Letters
From the Editor
On the Web
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6059.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6133.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6183.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6164.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6169.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6126.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6156.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6161.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6155.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6188.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6198.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6190.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6186.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6195.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

What Has 1.1 Terabytes, 9,503 BogoMips and Flies?

Don Marti

Issue #101, September 2002

What makes the ULB different from a hot PC with Linux on it? We pick stable,
well-supported hardware for a homebrew system and end up with a terabyte
of storage in an unassuming beige box.

We've been doing “building the Ultimate Linux Box” articles in LJ since 1996. In
that time, we have seen Linux scale to IBM mainframes, 32-way ccNUMA boxes
and other exotic hardware. As much as we'd like to explain how to build them,
most of us aren't going to have the space, power or budget for a 32-processor
system that we can tear down whenever we want to put in another sound card.

A large tower case has plenty of space for working inside and keeps cables out of the way.
You can mount all drives on the upper level, so plenty of air can get to the hot processors.
This is before installing drives and cards.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

So our Ultimate Linux Box is more of an ultimate Linux workstation or an
ultimate Linux small server—big enough to be faster than you need for most
uses and small enough to be practical in an office or home environment.

The first question, of course, is whether to buy or build your machine. On the
one hand, you can do things for your hand-built system that a mass-market PC
manufacturer probably won't:

1. Pick the very best case for the exact hardware you want to run, your work
environment, your aesthetic sensibilities and your desire to work inside
easily.

2. Use a top-quality power supply and quiet, ball-bearing fans.
3. For non-ultimate systems, you can put a really good SCSI card, SCSI drives

and Ethernet card on what is otherwise a low-end desktop machine. This
type of configuration will work well for most Linux developer workstations
and small server tasks, but mass-market vendors won't usually build them
because they don't appeal to people who buy systems by comparing CPU
clock speeds and prices.

4. Leave off the parts that will end up gathering dust: your keyboards and
mice will last several generations of hardware, and you probably already
have a box with a CD burner.

On the other hand, there are two things that a mass-market PC manufacturer
can provide that you probably won't:

1. Professional thermal and acoustic engineering. Your homebrew system
will likely end up with more fans, a bigger case and a bigger power supply
than a mass-market system with similar performance numbers. This
doesn't necessarily have to translate into more noise, if you're careful.

2. Relationships with hardware vendors who don't respect you. One of the
big differences between our box and the Hewlett-Packard x4000 we
reviewed in the LJ June 2002 issue is that we're using an ATI video card,
and HP uses NVIDIA.

A lot of NVIDIA-based cards are on the market right now, and many users are
reporting high performance with NVIDIA's proprietary drivers. If you're Hewlett-
Packard and have a close relationship and nondisclosure agreements with
NVIDIA, it's possible to make this work. Customers can treat HP like any other
UNIX workstation maker—call HP and let them bug NVIDIA if the problem is
NVIDIA's fault.

But if you're working with interesting new versions of core software, such as
the kernel and X, you might not find much help from the traditional Linux
channels for proprietary modules. At USENIX this year, Linus Torvalds said,

“They may work, but you're not getting the full advantage of Linux.” The only
case when you could possibly accept a non-Linux kernel module is when you're
not doing any “Linux-y” stuff with the box—if you treat it like just another PC
and don't recompile the kernel or hack anything whatsoever. Oh, and if you
completely trust your hardware vendor.

The intermediate route, which is ordering your system from a low-volume or
custom shop serving the Linux market, is worth considering if you want to save
shopping and building time, as well as get good advice on Linux-friendly parts.
Linux hardware vendors are an informal, peer-to-peer reputation system for
selecting good parts, and this works surprisingly well. You can go to the web
sites of the good ones, see complete lists of every piece of hardware that will go
into your system and get a no-hassle warranty on the complete box.

For this year's Ultimate Linux Box, we started with a base configuration of the
Glacier Dual Xeon workstation from Aspen Systems Inc. in Colorado, and here's
why. Think of the Ultimate Linux Box as a Beowulf node, one with good
graphics and sound and a lot of reliable storage, in a tower case.

Companies that build Beowulf clusters are good places to look for the fastest
processors and motherboards and the most reliable memory, because cluster
users are picky about such things.

Processors, Motherboard and Memory

Unfortunately, our schedule for this article caught us in the middle of Intel's
much-awaited transition from RAMBUS to DDR memory. We had to go to press
before we could get our hands on a dual Xeon motherboard with both DDR and
AGP support, which should be available soon. But if you're playing in Ultimate
Linux Box territory, dual Xeon is the way to go. So, we got the RAMBUS-based
SuperMicro P4DC6 recommended by Alan Taub at Aspen. Our box clocked out
at 9,503 BogoMips with a 2.4.18 kernel. Yow!

SCSI on the motherboard is cheaper than a separate SCSI card. Big fans are good. CPU
coolers are shiny.

Since we're writing in the bad old days of RAMBUS for all you happy future
people in DDR-land, the best we can offer in the motherboard department is a
bunch of mindless platitudes. So do yourself a favor and check the web sites of
people who build Linux boxes and then have to take the phone calls when
customers have problems with them.

Four features commonly found on some motherboards but not on others are
SCSI, Ethernet, sound and video. Don't rule out a motherboard because it has
something you won't use. Due to the size of the Linux network server market,
all the common Ethernet chipsets you'll find on motherboards, such as the Intel
EtherExpress Pro100, are well supported. And if you're planning to build a SCSI
system, the price difference between a motherboard with and without SCSI is
generally less than the price of a SCSI card.

None of the video or sound chipsets they put on motherboards are Ultimate
Linux Box-class, but if you're considering reusing the motherboard for a server
later, it doesn't hurt. If you're like many office Linux users and rarely use sound,
you might as well use what comes with the motherboard.

Graphics and Sound

The trickiest part of building a Linux system is 3-D graphics. We chose an ATI
video card over an NVIDIA one this year. See Frank LaMonica's Sidebar on some
possible effects of this choice. Monarch Computer Systems hooked us up with a
Hercules 3-D Prophet, which is a nice RADEON 8500-based card that will enable

you to start working with the cutting-edge, open-source clean 3-D drivers when
they come out.

Which 3-D Card for Linux?

The sound support front is a happier place. We used the ALSA drivers, and with
a properly set up ALSA-based system you shouldn't need to disable the sound
chipset on the motherboard to use a high-end sound card. You can use both.
We would run the motherboard's audio in and out as a dedicated conference
system to chat with headquarters, while saving the Sound Blaster Live! for
playing Ogg Vorbis files on headphones. We still like the now-inexpensive
Sound Blaster Live! for the ubiquitous kernel support, easy setup, good sound
and, most important, the fact that 32 programs can have the audio device open
at the same time.

What's All This about a Terabyte?

Until now, we've always recommended a safe, high-performance but expensive
choice for storage: two of the fastest-spinning SCSI hard drives you can find.
This is still a good conservative option. However, when some people from
3ware showed up at a Silicon Valley Linux Users Group meeting with an
Escalade 7850 Storage Switch, we decided to try it out.

So this is the first time we've had RAID 5 and a terabyte of storage on a
workstation, and it was surprisingly easy to get working. We had to reboot from
an MS-DOS disk to run the utility to update the 7850's firmware, but the current
version of the driver is in the 2.4.18 kernel. Red Hat 7.3 and SuSE 8.0, the two
distributions we tried, recognized the array out of the box.

You'll be surprised to find the 3ware driver in /usr/src/linux/drivers/scsi, not in
drivers/ide. From the kernel's point of view, the ATA RAID controller looks like a
SCSI device. You can't make a terabyte filesystem on pre-2.4.18 kernels, so be
sure you have 2.4.18 or later.

The web-based management utility, 3DM, that currently ships with the
hardware is proprietary, but 3ware assures us that some time in July there will
be a scriptable, command-line management tool under the GPL. 3DM presents
a clean, easy-to-use interface that is simple to install. You also can rebuild an
entire RAID array from a web form.

If you want to use 3DM, you might need to reconfigure your web browser. 3DM
runs on port 1080, and Mozilla reported that, “Access to the port number given
has been disabled for security reasons.” To override this, add the line:

https://secure2.linuxjournal.com/ljarchive/LJ/101/6175s1.html

pref("network.security.ports.banned.override",
 "1080");

to Mozilla's all.js configuration file, which probably lives in usr/lib/mozilla/
defaults/pref/all.js.

3ware claims to be able to do hot-swap if you have the appropriate drive cage.
However, we installed the drives normally and didn't test this functionality. We
did get excellent performance numbers though. With eight Maxtor ATA drives,
we got 173.1MB/s reads and 23.5MB/s writes to an ext3 filesystem on an
otherwise unloaded system. This was about the same read performance as a
single 10,000RPM SCSI drive, but almost six times as fast for writes.

Driver author Adam Radford recommends two /proc tweaks to speed things up,
and we used them. Set /proc/sys/vm/max-readahead to 256, and set /proc/sys/
vm/min-readahead to 128.

Case and Building Hints

You don't want to make an Ultimate Linux Box your first PC-building project
because of the sheer cost of the parts. Salvage one good box out of a desktop
machine with a bad hard drive and a server with a bad motherboard, or
something like that. We assume that you know the basics of static protection,
reading the Fine Manual for the hardware and not electrocuting yourself. If
your Linux box-building tool of choice is a web form, you can skip this part.

Besides the basics, some tools you probably will want are a hemostat for
fetching dropped screws and moving jumpers, wire cutters for removing cable
ties, a nut driver set, a power screwdriver cranked down to minimum torque
and a label maker.

Big tower cases are a win when you're putting together your own box; you have
the flexibility to put what you want where you want. We still like the Lian-Li
aluminum cases, one of which we used last year.

Our least favorite color is Dumb PC Beige, no matter what you call it. (“Putty” is
a typical vendor name for this ugly color. Cool, just what I'd like to have in my
den, a big block of putty!) Unfortunately, many of the cool-looking cases in
other colors are designed for gamers who run hot processors and video cards
but only one or two ATA drives. So it is with a heavy heart that we must
recommend the SuperMicro sc760 series, not only for its capacious size but
also for its excellent flexibility in drive and fan placement.

SuperMicro cases are available with many convenient spots for drives and fans,
many of which you won't have to use. Different models support motherboards
with and without the special Xeon mounting holes, so decide on your

motherboard before selecting the case. Working inside is easy: remove the
locking front panel and both sides open out like a book.

SuperMicro reduces cooling difficulties with vents on the side of the case.

Think of the case, or any well-designed full tower, as a two-story building—the
motherboard and expansion cards live on the bottom floor, and the drives and
power supply live upstairs. There is one 12cm exhaust fan directly behind the
processors on the first floor, and you can place up to three intake fans at the
front. Upstairs, there is one exhaust fan above the power supply, and you can
mount up to four fans on the sides of the drives. We recommend leaving off the
drive carrier downstairs, if you can, and putting your hard drives in the 5.25"
bays with adapter brackets. This gives you more usable intake space at the
front of the bottom floor and puts the drives where the side fans can blow on
them.

All the ribbon cables from the 3ware card to the drives add up to a surface area
of about two and a half square feet. That much cable, placed sloppily, would
block a lot of airflow. We bundled the cables together into a flat bunch with
Velcro ties and looped the extra length upstairs behind the drives instead of
downstairs around the motherboard. Because we have side fans, this is the
safest place for it.

It's always important to balance intake and exhaust fans. The natural instinct is
to “blow out the hot air”, but too many exhaust fans will drop the pressure

inside the case, canceling out the efforts of the power supply fan and trapping
hot air inside the power supply. When the power supply goes, it generally takes
something more expensive with it. Because hot air rises, it's hard to go wrong
with low front intake fans and high rear exhaust fans.

A nice touch you will probably want to add is thumbscrews in place of the
Philips screws for the case sides. The Lian-Li case is already fitted with
thumbscrews throughout because the aluminum is very soft. Don't use a
screwdriver, manual or power, on an aluminum case.

All the surfaces of the SC760 are paintable, drillable and are easily removable
without unplugging a single wire. If you want candy-apple red and a blowhole,
you can easily take all the beige stuff on a nice trip to the sheet metal shop and
the spray booth without moving drives or cards.

Miscellany

You'll notice that we didn't mention all the peripherals, such as keyboards, mice
and monitors. Monitors, keyboards and mice are a matter of personal aesthetic
judgment, and your ability to pick one hands-on is probably going to be pretty
good. How many computers have your current favorite keyboard and mouse
outlasted, anyway?

What about CD burners, DVD drives and tape drives? Well, in a recent reader
survey, we saw that 95% of our readers have multiple computers. We
recommend that you set up one of your other machines as a backup server or
CD ripping/burning station.

That should be enough information to get you started on the journey to custom
Linux box building, so in the immortal words of the SuSE installer, “have a lot of
fun”.

Don Marti is technical editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Coding between Mouse and Keyboard, Part I

Patricia Jung

Issue #101, September 2002

This article shows you how to create the GUI of a tiny text editor without being
a C++ guru. In Part II, we'll add missing functionality and translate the program
into languages other than English.

The days when writing GUI applications was a matter between you and your
favorite text editor struggling with a compiler and make are long gone. Even
without an integrated development environment (IDE) like KDevelop, a lot of
helper applications promise to make C++ GUI programming as painless as
possible.

Whoever expects the KDE-proven Qt toolkit to be a tarball consisting of one
library will be disappointed when fetching more than 14MB from
ftp.trolltech.com/pub/qt/source. Though Qt was known for its good quality in
previous versions, Qt 3.0 had so many bugs that since its first appearance in
mid-October 2001, already the fourth maintenance release has come out. It is
expected that more will be following. Therefore, it is strongly recommended to
choose the latest version.

The qt-x11-free-3.0.x.tar.gz (we used Qt 3.0.4) archive includes not only the
class library and documentation in HTML format but also several tools that
promise to make life easier for everyone involved in a GUI application project.

Let's pick the new version of Qt Designer to create the graphical interface of a
simple text editor application. [The entire code for this editor is available at
www.trish.de/pub/linuxjournal/ljeditor_qt3.0.4.] With it comes the user-
interface compiler, uic, that converts the Designer's XML output format into C++
code. In Part II of this article we'll actually write some C++ code with your
favorite editor and fill the GUI framework with life.

Then, we'll use a new member of the Qt family, Qt Linguist, to localize the
program. Like Qt Designer, this is a GUI application using an XML format for

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
ftp://ftp.trolltech.com/pub/qt/source
http://www.trish.de/pub/linuxjournal/ljeditor_qt3.0.4

input and output. To create the XML list of phrases requiring translation, it
ships with a command-line tool named lupdate. Once they have been
translated, another command-line tool, lrelease, converts the XML into the
binary format required at application runtime.

Writing Makefiles for Qt applications is not really a trivial thing. Older versions
of Qt did not ship with a helper application, but Qt vendor Trolltech offered a
tool called tmake for separate download. The Qt 3.0 tarball includes the new
qmake utility that comes in handy to create the Makefile for the project. This
again we leave for Part II of this article.

Making Plans

With the g++ compiler we have all necessary tools together and should think
about the text editor application itself. What should it be able to do?

Obviously we want it to offer the usual tasks: opening a new editor window,
opening a file, saving its contents, saving it with a different filename, closing the
current editor window and quitting the entire application. Moreover, it should
support copy, cut and paste, undo and redo. We want the program to be able
to switch font characteristics to italic, bold, underlined and any combination of
these. In an About widget, the editor (let's call it ljedit) should reveal some
information about itself.

Apart from the changing of font characteristics, all tasks should be available via
a File, an Edit or a Help menu. The italics, bold and underline toggling should be
done via a submenu in the toolbar populated with additional icons for opening
and saving a file, undo, redo, cut, copy and paste.

Each of these icons should open a balloon help when the user hesitates over it
with the mouse. Apart from the Save As and the Exit action, all other tasks
should be available via keyboard shortcuts.

To avoid users losing data unexpectedly, opening and closing a file as well as
exiting the application should be backed by a user dialog that asks whether the
old data should be saved or discarded, or whether the user wants to stay with
the old file. While most of the above-mentioned tasks can be done with the
Designer, this last bit will have to wait until next issue.

Designing the User Interface

If more than one version of Qt is installed on the system, the QTDIR variable
should first be set to the directory containing the relevant Qt version. Next, it's
time to fire up the Designer with a designer & in a shell. In case the directory
$QTDIR/bin has not been included in the search path or several Qt versions are

available, the absolute path must be added to the command. To start a new
project choose New from the File menu. In the upcoming dialog, click the C++
Project icon and confirm your choice with the OK button. Now we have the
opportunity to create a new qmake project file by choosing name, location and
adding a project description (Figure 1).

Figure 1. First Step: Creating a Project

Next, we choose the New entry from the File menu once again in order to
create the first (and for the purposes of this article only) GUI widget of our
editor. Thus, Main Window is the right entry to choose from the New File dialog.
We're happy with the default Insert entry that makes it a part of our new
project.

This opens the Main Window Wizard. With the first questionnaire (see Figure 2)
we feel that yes, Designer should create menus and the toolbar for us. It should
provide us with a code framework for the functions used and connect these
functions to the relevant actions.

https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f2.large.jpg

Figure 2. Creates Menus and Toolbar: the Main Window Wizard

The Next> button brings us to a setup dialog for the toolbar. From the File
Category, we choose Open and Save and add them to the Toolbar list using the
arrow to the right. Then we choose the Edit Category and add the Undo, Redo,
Cut, Copy and Paste actions, plus Separators (Figure 3). The last wizard dialog
does not leave any work for us to do; it simply finishes the widget form. This
leaves us with a Designer looking like Figure 4.

Figure 3. Filling the Toolbar with Actions

https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f3.large.jpg

Figure 4. The Designer with a New Main Window

All the new widget is missing in order to look like a proper editor is a nice name
in the window caption (currently reading Form1) and the text edit canvas. To
solve the first task we need to have a look at the Properties tab in the Property
Editor window. It always fills itself with the characteristics of the current widget
(i.e., the one last clicked on the form); to begin with this is the form widget.

By changing the property name to “ljeditor” we define the class name of the
widget we're creating. On the other hand, caption defines the window caption
and should be set to the new application's name, “ljedit”.

Now, let's add the editor canvas. Click on the Richtext Editor icon (in Figure 4,
the fifth icon from the right labeled “abcde”), then click on the rastered
background of the ljeditor form, and the new editor canvas can be resized by
pulling it in shape with the blue handler points. Let's baptize it “TextEdit” in the
Property Editor.

All we have to do now is adjust functionality. First we remove the actions we
don't want to implement from the Action Editor (see Figure 5) by clicking on the
scissors icon or the Delete Action entry in the context menu available with a
right-click onto the marked action. In this example, we can do without
helpIndexAction, helpContentsAction, editFindAction and filePrintAction.

Figure 5. The Action Editor

Action!

In return, an editor needs some new actions to change the font characteristics.
In the menu descending from the Action Editor's Create New Action icon (the
little paper sheet on the left-hand side) we choose New Dropdown Action
Group as a container for them and edit its properties. First, the action group is
named “fontCharacter” in the name line of the Property Editor. Then we choose
an appropriate icon using the “...” button next to the clicked iconSet property.
Using the Add... button, it is possible to add icons stored somewhere in the
filesystem.

Its text, automatically used for the menuText and the various tips (see
Glossary), should read “Font Characteristics”. We change the tooltip and the
statustip to “Choose font characteristics”, and most importantly, we set the
exclusive property to False. This means that the user will be able to combine
italics, bold and underlined font if needed. An exclusive action group would
allow for only one of them at a time.

Glossary

With a right-click on the fontCharacter action group in the Action Editor and
subsequent decision for New Action in the context menu, we add the italics
action with Ctrl-I as accelerator key and Italics as text. Because the user can
toggle italics on and off, it is important that the property toggleAction reads
True. To begin with, italics should be off; therefore, the on property must have
the value False.

We define the other two child actions of fontCharacter the same way, bold (Ctrl-
B) and underline (Ctrl-U).

https://secure2.linuxjournal.com/ljarchive/LJ/101/4721s1.html

To add the entire fontCharacter action group to the toolbar, we simply drag it
from the Action Editor to the form and drop it onto the toolbar. A right-click
into the toolbar allows us to add a separator (Insert Separator).

By now, these actions don't do anything when playing with the preview
available by pressing Ctrl-T. To let them actually do what they promise, we once
again mark the italics action in the Action Editor, click on the red-blue Edit
Connections icon and choose the toggled(bool) signal from the Signals list.
Instead of connecting it to an ljeditor slot, we choose TextEdit in the Slots drop-
down menu and subsequently setItalic(bool) in the list of slots provided by the
QTextEdit class of which TextEdit is a member. No additional click is needed;
with the appearance of the connection in the Connections: window, everything
is done (see Figure 6), and the OK button is our friend.

Figure 6. When the italics action is toggled, ljedit writes italics or stops doing so.

Then we repeat the same procedure with the bold action's toggled(bool) signal
and TextEdit's setBold(bool) slot. We connect the underline action to TextEdit's
setUnderline(bool) slot. After this the preview reacts to Ctrl-I, Ctrl-B and Ctrl-U
as wanted.

This encourages us to edit the connections of the predefined actions; these
can't be toggled. Instead, they launch a user command like “save current data”
when activated (i.e., clicked or chosen). That's why we connect the activated()
signal to the appropriate slot.

For editRedoAction this is TextEdit::redo(). We disconnect the connection with
the default ljeditor::editRedo(); it would be the right choice if we didn't want to

https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f6.large.jpg

rely on QTextEdit's redo() function. The same way, editUndoAction's activated()
signal is connected with TextEdit::undo() and disconnected from the respective
ljeditor function skeleton. We repeat this step with editPasteAction and the
TextEdit::paste() slot editCopyAction and the TextEdit::copy() slot, and
editCutAction and the TextEdit::cut() slot.

The remaining predefined actions (helpAboutAction, fileExitAction,
fileSaveAction, fileSaveAsAction, fileOpenAction and fileNewAction) stay
connected with the predefined ljeditor slot skeletons that we later have to fill
with code.

One action is still missing: the one that the user activates to close the current
editor window (as opposed to fileExitAction, which quits the entire application).

The work flow is a familiar one: we choose New Action from the Action Editor's
Create new Action menu. The new action is named “fileCloseAction” in the
Property Editor and is equipped with Close as text and Ctrl-Z as the keyboard
accelerator.

However, we're missing a slot to connect its activated() signal. We fix this by
opening the Slots... menu item in the Designer's Edit menu. Figure 7 shows the
dialog that is opened now.

We add a slot with the function name fileClose(), the Return Type void and the
Access type public. The Edit Slots dialog does no magic, it simply creates a
function skeleton in the class definition of the ljeditor class.

Figure 7. A new function skeleton comes into being.

https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/4721f7.large.jpg

Now we can connect the fileCloseAction's activated() signal to ljeditor::fileClose()
in the Edit Connections dialog provided by the Action Editor. As this action
should be available via menu only, we simply drag and drop it into the File
menu of the ljeditor form.

Adding Some Code

Closing a widget in Qt is easy: every Qt widget inherits a close() function from
the mother of all Qt widgets, QWidget. This is not really much code, so it would
be nice if we could fill the fileClose() slot with this one line.

A right-mouse click on the ljeditor form opens a context menu. The choice of its
Source... entry does the trick. A code editor window appears and allows us to fill
in the one-liner (see Figure 8):

void ljeditor::fileClose()
{
 close();
}

Figure 8. Simple code lines are easily added to the slot skeleton.

So why not fill the fileExit() slot as well? To quit the entire application, the
application object's closeAllWindows() function is called:

void ljeditor::fileExit()
{

 qApp->closeAllWindows();
}

As the Designer usually does not deal with QApplication objects itself,
qapplication.h (which provides the qApp proxy for the real application object) is
not included by default, and the code generated from the ui description would
not compile.

Fortunately, the Object Explorer allows us to include additional header files. By
default it shows the Widgets tab (see Figure 4, bottom left), but we need the
Source tab right now. Right-clicking the empty Includes (in Implementation)
folder allows us to add a header file (New). Don't forget the <> brackets around
a global include like <qapplication.h> (Figure 9).

Figure 9. The Object Explorer allows one to include additional header files.

Another slot we can fill with life without being afraid of getting too many
compilation errors is helpAbout(). It is called when the user opens the About...
entry in ljeditor's Help menu and simply pops up a message box with the
caption About ljedit and some information about the program. By surrounding
all text strings with tr() we make sure that the program can be localized
painlessly, a task we will fulfill in Part II. For example:

void ljeditor::helpAbout()
{
 QMessageBox::about(this, tr("About ljedit"),
 tr("A tiny text editor.\n"
 "(C) 2002 Patricia Jung for Linux Journal\n"

 "Using Qt 3.0.4 and Qt Designer."));
}

To be able to use QMessageBox::about(), we have to include <qmessagebox.h>
the same way we did with <qapplication.h>. We add the remaining functionality
in a subclass next time. Thus, all we have left to do with the Designer is clean up
the new GUI.

Important Cosmetics

Before we leave the Designer for good, we check that none of the assigned
keyboard shortcuts has been used twice. This is done by choosing Check
Accelerators from the Edit menu.

Additionally, we clean up all the ljeditor slots that we weren't going to
implement anyway or that we used TextEdit slots for instead. By choosing Slots
from the Edit menu (one way to do it), we open the dialog that allows us to
mark editUndo() and remove it with a mouse click on Delete Slots (Figure 7).
The same fate applies to editRedo(), editCut(), editCopy(), editPaste(), editFind(),
helpIndex(), helpContents() and filePrint().

Furthermore, we check the GUI preview for separators that don't fit. As we
decided against using the editFindAction, a single separator can be found at the
end of ljeditor's Edit menu: once upon a time there was a Find entry below. To
erase the separator, right-click on it in the form and choose Delete Item. The
same applies to one of the two separators above the Exit entry in the file menu.

All GUI elements are in their place—time to let Qt adjust the widget
proportions. Once again, we choose the entire form and select Lay Out
Vertically from Layout in the main menu. If a user adjusts the application
window size now, the TextEdit widget will follow. If we wish to place widget
elements differently onto the form, we need to break the layout first.

Last but not least, we want this GUI to be stamped as ours. To do this we fill in
the Author name and a description in the dialog raised by choosing Form
Settings from the Edit menu (see Figure 10). Here it is possible to decide
whether we want to store the icons in a subdirectory of our project directory or
whether we include them directly in the user-interface description.

Figure 10. Let the world know who designed this GUI.

A final selection of Save all from the File menu and an XML file with the user-
interface description (best named after the relevant class, e.g., ljeditor.ui) along
with ljeditor.ui.h, the file storing the code we typed into the code editor,
becomes part of the project.

Patricia Jung (trish@trish.de) has a background as a system administrator,
technical writer and editor, and as such is happy to have the privilege of dealing
with Linux/UNIX exclusively.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:trish@trish.de
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Bring an Atomic Clock to Your Home with Chrony

Fred Mora

Issue #101, September 2002

Among all the techno-toys that make a true geek salivate, few are as cool as an
atomic clock.

Here is a device that finally provides what generations of scientists have
dreamed about: an ultra-precise time reference, a timekeeping piece of
incredible accuracy. These are not simple gadgets; some physics experiments,
such as the verification of gravitation theories, require measurement of very
small time intervals.

The National Institute of Standards and Technology (NIST) has a lab in Boulder,
Colorado, devoted to running atomic clocks and providing official US time. In
this lab, the NIST-F1 cesium fountain atomic clock provides a time reference
with a precision of 2 × 10-15 (two parts per millionth of a billionth) by counting
the vibrations of cesium atoms at about 9GHz. An even better clock is in the
works. It will measure the resonance of a single mercury ion at about 100,000
times that frequency, and it will provide a thousand-fold increase in precision.

Figure 1. Atomic Clock

The sacred duty of true precision-obsessed geeks is now clear. They simply
have to synchronize the real-time clock of their Linux machine(s) with such an
insanely precise clock.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Of course, you cannot simply go to a computer store and buy an atomic clock.
(Not that I didn't try—sheesh, the brazen gall of that sales guy, trying to saddle
me with a radium dial alarm clock.) The next best thing is a radio-synchronized
clock, and a variety of models are available. They can be connected to the serial
port of a PC and provide time signals synchronized on the NIST clock.

But why buy hardware when well-designed, free software would do the trick?
The Network Time Protocol (NTP) has been created to synchronize computers
and distribute time references across networks. An NTP server keeps time as
close to the official reference as possible. Remote NTP clients query these
servers and sync the local real-time clock (RTC) of the machine. This
timekeeping is a complex problem due to the nature of distributed computing.
Propagating packets between machines takes a nonzero, variable time. Various
correction schemes are integrated in NTP to take variable latency into account.

Why Chrony?

There are several NTP clients and servers available for Linux. The simplest way
of using NTP would be to fire up a program, such as xntpd, and point it to an
NTP server. However, this program and most other NTP clients work best when
they are connected to the Internet continuously. Unfortunately, an intermittent
connection through a modem is still the way most homes access the Internet.

That's where chrony comes in. Chrony is a program that explicitly supports
intermittent connections. It is comprehensive but a tad intimidating, so we'll
walk through an installation and configuration for the most common case: a
home user with a modem connection.

Chrony is composed of chronyc, a text-based client program; chronyd, an NTP
server running as a dæmon in the background; and various configuration files.
To interact with the chronyd dæmon (chronyd), you run the chronyc client and
issue commands.

Downloading and Installing

Some Linux distributions include a version of chrony. Chances are that this
version is an older one, e.g., 1.15 or less. In that case, you can uninstall the
chrony package before installing the new version.

First, download the chrony tarball from its home page (see Resources). At the
time of this writing, the current version is 1.16.1. It is composed of the 1.16
version completed by a patch to 1.16.1. We extract the source from the tarball
and apply the patch:

tar -zxvf chrony-1.16.tar.gz # extracts source
cd chrony-1.16 # dir created from tarball

gunzip < ../chrony-1.16-1.16.1-patch.gz | patch -p1
patching file NEWS
patching file configure
patching file rtc_linux.c
patching file version.txt

The program uses a configure script, which makes customization a snap. The
only option that you need to specify manually is the installation directory, with
the --prefix option. By default, chrony will install the client chronyc into /usr/
local/bin and the dæmon chronyd into /usr/local/sbin. It is the equivalent of:

In the same chrony-1.16 dir as before
./configure --prefix /usr/local

Once you have run configure, you might want to clean up the source a tad
before running make. Why? Because the source comes with a few syntactic
gotchas that make the GCC preprocessor complain. If you run make right away,
you'll end up with plenty of warnings such as:

warning: extra tokens at end of #endif directive

Nothing is broken, but it's easy to get it to compile cleanly. Edit the files
regress.h, reports.h and rtc_linux.h. The last line is an #endif statement
followed by a constant name. You need to comment out that name. For
instance, in report.h, change:

#endif GOT_REPORTS_H

to:
#endif /* GOT_REPORTS_H */

and chrony will compile like a charm.

Now, do:

In the same chrony-1.16 dir as before
make
su root # You need to be root to install
install

The next step is to make sure that chronyd starts up at boot time. If your
distribution came with an older version of chrony, then you are all set; just
make sure that the newer version was installed in the same location as the old
one. Otherwise, there are several methods. The simplest is to add a paragraph
supplied by the chrony doc in your /etc/rc.d/rc.local.

Stratum Conundrum

Now, it's time to configure chrony. Because you want to sync your machine's
clock on an NTP server, you need to pick one. Actually, you'll need to pick a few
different servers in case one of them is unreachable. See the URL for the list of
NTP servers in Resources.

The list separates the NTP servers into several strata. Now, what's a stratum?
We are not talking about a geological layer of rock here. Think onion rings
instead. Stratum 1 is composed of servers that are directly synced with an
atomic clock. Stratum 2 is a set of NTP servers that are fed timestamps by
stratum 1 and so on. Keep away from stratum 1 unless you run a physics lab or
your private network has hundreds of machines. Stratum 1 machines should be
reserved for distributing time references to secondary servers or to machines
that cannot settle for the few microseconds of imprecision incurred by using
stratum 2. For our purpose, choosing servers in stratum 2 or even 3 will be
perfectly fine.

Notice that the administrators of some NTP servers require you to e-mail them
if you want to sync with their machine. Please do so. If a thousand home
machines suddenly start requesting timestamps from a poor university NTP
server, the administrators need to know that it's actually for syncing clocks and
not some new form of flood attack.

Ideally, you should pick an NTP server that is not too far away from your
machine (IP-wise). This is not always the same as geographically. A rule of
thumb is to check the output of traceroute, which lists the systems traversed by
packets between your machine and the destination. For instance, since I am a
New York dweller, I picked the following machines: ntp.ctr.columbia.edu from
Columbia University, clock.psu.edu from Pennsylvania State University and
ntp0.cornell.edu from Cornell University (send an e-mail to pgp1@cornell.edu if
you use this server).

Become root and edit your /etc/chrony.conf file to add these definitions:

server ntp.ctr.columbia.edu offline
server
server ntp0.cornell.edu offline

Of course, replace these server names with the names of NTP servers located
close to you. Note that the servers are declared off-line. Most modem-
connected machines do not start a connection at boot. So when chronyd starts
up, it should not start querying servers. Also, note that the chrony doc insists
that you should use the TCP/IP numerical address of the NTP servers to
alleviate a dependency on DNS. Well, the administrators of most NTP servers
want you to use only the DNS-declared names so that they retain the ability to
move the servers around. Besides, your modem connection hopefully can
reach your ISP's DNS, so I recommend that you use the NTP server names in
the chrony.conf file.

mailto:pgp1@cornell.edu

Passwords

The NTP protocol supports packet authentication. After all, if you run a
company, you don't want wrongdoers to set your machines' clocks to an
arbitrary time. Financial records with an incorrect timestamp can throw your
auditors into a loop.

Chrony supports that authentication with a simple password scheme. You can
define several chrony users identified by a number and give them different
passwords. The relevant statements in the chrony.conf file are:

commandkey 9
keyfile /etc/chrony.keys

This specifies that this machine uses key number 9 to be read from the
passwords stored in /etc/chrony.keys. The latter contains, for instance:

9 zack

Zack is the name of my cat. Before I started using chrony, the beast was the
closest thing to a precise clock I had in the house. Every morning at 7:30, he
meows pathetically until I feed him—including weekends. He quickly became
very good at ducking pillows.

Also, chrony needs to store the rate at which your machine's clock deviates, or
drifts, from the NTP server time. Specify a location for the drift file with:

driftfile /etc/chrony.drift

This way, chrony does not have to accumulate measurements and recalculate
the drift every time you start it.

You might have several computers in your home. In that case, it's a good idea
to sync their clocks, too. By default, chronyd acts strictly as an NTP client with
respect to the servers you define in the server statements. But you can set
chronyd to act like a server for your own subnetwork. Just add an allow
statement to your chrony.conf, and specify either some machines or a
subnetwork. For example, my home machines' Ethernet cards have addresses
in the (nonroutable) 192.168 subnet, and the machine acting as a server has
the statement:

allow 192.168

in its chrony.conf file. This way, other machines in my home can sync with my
server (address 192.198.0.1) by running chronyd with this simple configuration
file:

server 192.198.0.1
keyfile /etc/chrony.keys
commandkey 9
driftfile /etc/chrony.drift

To summarize, the chrony.conf file of your modem-connected machine is given
below. Note: replace the NTP servers in this example with the ones that you
pick in the list of NTP servers (see Resources):

server ntp.ctr.columbia.edu offline
server
server
commandkey 9
keyfile /etc/chrony.keys
driftfile /etc/chrony.drift

Running the Client

So now that chrony is installed, verify that chronyd runs in the background
(start it if necessary). Remember that the configuration file specifies (with the
offline keyword) that chronyd should not query the servers without your
permission. Start your modem connection, verify that you are connected to
your ISP and then start the chronyc client. Figure 2 shows a sample session.

Figure 2. Sample chronyc Session:

1. Password command—notice that your password doesn't echo.
2. The online command tells chronyd to start using the NTP servers.
3. The source command lists the NTP servers known by chronyd: ^ means a

server, * indicates the source to which chronyd is currently synchronized
and + indicates other acceptable sources.

4. Stratum 2 is good enough.
5. The base-2 logarithm of the number of seconds between two polls of the

server: 7 is 128 sec, 8 is 256.
6. Time since the lastsample was received from the source (in seconds

unless you see m, h, d or y for minutes, hours, days or years).
7. Offset measurement from the last sample. First comes the original

measurement, then the actual offset between brackets, then the margin
of error.

https://secure2.linuxjournal.com/ljarchive/LJ/101/5657f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/5657f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/5657f2.large.jpg

The first command you enter in chronyc should be the password command.
Then, order the dæmon to start talking to the NTP servers with the online
command. List the NTP servers (sources -v, which is the verbose form of the
sources command). See the tilde (~) in the second column? It says that the
server cannot be used yet. It's too early; the dæmon needs a couple of minutes
to accumulate timestamps and make sure the responses of the NTP servers
aren't delirious. By some cosmic quirk, the difference between my machine's
clock and the NTP timestamps happens to be 42 seconds (all hail Douglas
Adams!).

Wait a moment and issue another sources command. After a while, you'll see
that one of the servers has been selected by chronyd (a star appears in the
second column) and that the offset of your machine is decreasing:

^* cudns.cit.cornell.edu
2 6 54 +2999ms[+2999ms] +/- 3653ms

Chrony slowly accelerates or slows your clock to make it reflect the NTP time.
So over the course of a few minutes, by gradual correction, any offset will
disappear.

Other useful commands include:

• tracking: shows how your system clock is doing, that is, how fast or slow it
is with respect to NTP sources.

• sourcestats -v: shows what chronyd thinks of the sources from the
measurements it has obtained so far.

• makestep: immediately sets your system's clock to the NTP time instead
of gradually skewing the clock. This is the equivalent of setting the time.
Some versions of X11 can freeze if you set the time back brutally.

Finally, remember to issue an offline command in chronyc before you
disconnect your modem. Otherwise, chrony will believe the source it has picked
has become unreachable and frantically will try to pick a new one.

Automated Sync

As you can guess, chronyc begs for automated operation. You can easily create
two little scripts that will set chrony on-line and off-line. The on-line script:

#! /bin/sh
This script is called after connect
/usr/local/bin/chronyc <<EOF
password zack
online EOF

should be called after the modem connection has been established, and the
off-line script:

#! /bin/sh
This script is called before disconnect
/usr/local/bin/chronyc <<EOF
password zack
offline
EOF

should be called right before you disconnect.

If you use a special dialer, check if it has options to allow post-connect and pre-
disconnect commands. I am using the ATT Global Network dialer, and it allows
me to put such scripts in its /opt/attdial/bin. If you are using the plain vanilla
PPP, you can insert the on-line script in the /etc/ppp/ip-up file and the off-line
script in /etc/ppp/ip-down. Some distributions want you to leave ip-up and ip-
down alone and modify only ip-up.local and ip-down.local (check to see if these
files exist).

Conclusion

I found chrony the ideal tool for syncing my machine through a modem
connection that is only up a few hours a week. I'd like to thank chrony's author,
Richard Curnow, who sent me valuable tips and answered many questions
quickly.

Resources

email: fmora@us.ibm.com

Fred Mora has been a UNIX system administrator and developer since 1990. He
has published and coauthored several books and technical manuals. He is
doing his best to lose the rest of his sanity by tinkering with Linux and writing
more books, with the encouragement of his techie wife. He works at IBM.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/101/5657s1.html
mailto:fmora@us.ibm.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

CVS homedir

Joey Hess

Issue #101, September 2002

Joey shows you how to keep track of everything with CVS.

I keep my life in a CVS repository. For the past two years, every file I've created
and worked on, every e-mail I've sent or received and every config file I've
tweaked have all been checked into my CVS archive. When I tell people about
this, they invariably respond, “You're crazy!”

After all, CVS is meant for managing discrete bodies of code, such as free
software programs that are worked on and available to a lot of people or in-
house projects that are collaboratively developed by several employees. CVS
has a reputation of being a pain to deal with, and it has a lot of crufty bits that
regularly drive users up the wall, like its mistreatment of directories. Why inflict
the pain of CVS on yourself if you don't have to? Why do it on such a scale that
it affects nearly everything you do with your computer?

I get three major benefits from keeping my whole home directory in CVS: home
directory replication, history and distributed backups. The first of these is what
originally drove me to CVS for my whole home directory. At the time, I had a
home desktop machine, two laptops and a desktop machine at work. Rounding
this out were perhaps 20 remote accounts on various systems around the
world and many systems around the workplace that I might randomly find
myself logging in to. I used all of these accounts for working on the same
projects and already was using CVS for those projects.

I'm a conservative guy when it comes to my computing environment (I've used
the same wallpaper image for the past five years), and at the same time I'm
always making a lot of little tweaks to improve things. Whenever I go to work
and something wasn't just like I had tweaked it the night before, I'd feel a
jarring disconnect, and annoyingly copy over whatever the change was. When I
sat down at some other system at work, to burn a CD perhaps, and found a
bare Bash shell instead of the heavily customized environment I've built up

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

over the past ten years, it was even worse. The plethora of environments, each
imperfectly customized to my needs by varying degrees, was really getting on
my nerves. So one day I cracked and sat down and began to feed my whole
home directory into CVS.

It worked astonishingly well. After a few weeks of tweaking and importing I had
everything working and began developing some new habits. Every morning (er,
afternoon) when I came into work, I'd cvs up while I read the morning mail. In
the evening, I'd cvs commit and then update my laptop for the trip home. When
I got home, I'd sync up again, dive right back into whatever I'd been doing at
work and keep on rolling until late at night—when I committed, went to bed
and began the cycle all over again. As for the systems I used less frequently, like
the CD burner machine, I'd just update when I got annoyed at them for being a
trifle out of date.

It only took a few more weeks before the advantage of having a history of
everything I'd done began to show up. It wasn't a real surprise because having
a history of past versions of a project is one of the reasons to use CVS in the
first place, but it's very cool to have it suddenly apply to every file you own.
When I broke my .zshrc or .procmailrc, I could roll back to the previous day's or
look back and see when I made the change and why. It's very handy to be able
to run cvs diff on your kernel config file and see how make xconfig changed it.
It's great to be able to recover files you deleted or delete files because they're
not relevant and still know you've not really lost them. For those amateur
historians among us, it's very cool to be able to check out one's system as it
looked one full year ago and poke around and discover how everything has
evolved over time.

The final major benefit took some time to become clear. Linus Torvalds once
said, “Only wimps use tape backup: real men just upload their important stuff
on FTP and let the rest of the world mirror it.” I'm not a real enough man to
upload my confidential documents to ftp.kernel.org though, so I've been
wimping along with backups to tape and CD and so on. But then it hit me: take,
for example, one crucial file, like my .zshrc or sent-mail archive: I had a copy of
that file on my work machine, and on my home machine, and on my laptop and
several other copies on other accounts. There was another copy encoded in my
CVS repository too.

I'm told that the best backups are done without effort—so you actually do them
—and are widely scattered among many machines and a lot of area so that a
local disaster doesn't knock them out. They are tested on a regular basis to
make sure the backup works. I was doing all of these things as a mere side
effect of keeping it all in CVS. Then I sobered up and remembered that a dead
CVS repository would be a really, really bad thing and kept those wimpy

ftp://ftp.kernel.org

backups to CD going. But the automatic distributed backups are what keep me
sleeping quietly at night. Later, when I left that job, the last thing I did on my
work desktop machine was: cvs commit ; sudo rm -rf /. And I didn't worry a bit;
my life was still there, secure in CVS.

A full checkout of my home directory with all the trimmings often runs about
4GB in size. A lot of that will be temporary trees in tmp/ and rsynced Ogg Vorbis
files (so far, I have not found the disk space to check all of them into CVS). My
CVS repository currently uses less than 1GB of space, though it is steadily
growing in size. I keep some 13,000 files in CVS, and so a full CVS update of my
home directory is a sight to see and takes a while.

These days I'm often stuck behind a dial-up connection, and I mostly just use
one laptop, so I might go days between CVS updates. Other better-connected
systems have automatic CVS updates done via cron each day. I cvs commit

whenever I want to make a backup of where I am in a file or when I am at the
point of releasing something. I still also do a full commit of my home directory
every day or so. I confess that some of my CVS commit messages are less than
informative—“foo” has been used far too many times on some classes of files. I
even do some automatic CVS commits; for example, my mailbox archives are
committed by a daily cron job.

There are other benefits of course. I attend many tradeshows and other events
that require me to sit down at some computer out of the box, use it for an hour
or a day and never see it again. I can check out the core of my CVS home
directory in about five minutes, and after that it is just as comfortable as if I'd
SSH'd home and was doing everything there. I even get my whole desktop set
up in that five minutes. In a chaotic tradeshow environment, there is nothing
more reassuring than having your familiar computer setup at your fingertips as
you demo things to the hordes of visitors.

Keeping your home directory in CVS is not all fun though. Anyone who's used
CVS in a large project probably has had to resolve conflicts engendered by two
people modifying the same file. At least you can curse the other guy who
committed the changes first while you deal with this annoying task. Most of you
have probably not had to resolve conflicts between the file you modified at
home and at work, then cursing at yourself.

Then there are CVS's famous problems: poor handling of directories and binary
files. The nearly nonexistent handling of permissions, which is not a big deal in
most projects but becomes important when you have a home directory with
some public and some private files and directories in it. A slow, bloated
protocol, hindered even more by the necessity of piping it all over SSH; the pain
of trying to move a file that is already in CVS, or much worse, a whole directory

tree, again hits you especially hard when you're using CVS for the whole home
directory. And those damn CVS directories are always cluttering up everything.
I've developed means of coping with all of these to varying degrees, but like
many of us, I'm hoping for a better replacement one day (and dreading the
transition).

Perhaps it's time that I get down to the details of how I organize my home
directory in CVS. I've always managed my home directory with an iron hand,
and CVS has just exacerbated this tendency. Let's look at the top level:

joey@silk:~>ls
CVS/ GNUstep/ bin/ debian/ doc/ html/ lib/
mail/ src/ tmp/

Yes, that's it. Well, except for the 100-plus dot files. Most people use their home
directory as a scratch space for files they're working on, but instead I have a
dedicated scratch directory, the tmp directory, which I clean out irregularly. In
general, when I start a new file or project, I will be checking it into CVS soon, so I
begin working on it in the appropriate directory. This document, for example, is
starting its life in the html directory and will be checked into CVS soon to live
there forever. Of course, sometimes I goof up and then I have to resort to the
usual tricks to move files in CVS. And so the first rule of CVS home directories is
it pays to think before starting and get the right filename and location the first
time. Don't be too impatient to check in the file.

CVS is a great way to ensure that you have a nice, clean, well-managed home
directory. Every time I cvs update it will helpfully complain to me about any files
it doesn't know about. Of course, I make heavy use of .cvsignore files in some
directories (like tmp/).

If I go to another machine, the home directory looks pretty much the same,
though various things might be missing:

joeyh@auric:~>ls
CVS/ GNUstep/ bin/ tmp/

I use this machine for occasional specific shell purposes. I don't administer the
system, so I don't want to put private files there. The result is a much truncated
version of my home directory. It's perfectly usable for everything I normally do
on that machine, and if I want to, say, work on this document there at some
point, I can just type cvs co html and a password and be on my way.

The way I make this partial-checkouts system work is by using CVS modules and
aliases. I have modules defined for each of the top-level directories and for the
home directory (dot files) itself. For example, the entry in my CVSROOT/
modules file for the stripped-down version of my home directory looks like this:

joeyh -u cvsfix -o cvsfix joey-cvs/home &bin

For more complete home directories, I use this instead:

joey -u cvsfix -o cvsfix joey-cvs/home &src &doc
&debian &html &lib &.hide &bin &mail

Notice the .hide module. It results in a ~/.hide directory when I check it out. This
directory is where I put the occasional private file that I don't want to appear in
home directories—like the one on auric—that are on systems not administered
by me. The files in .hide get hard-linked to their proper locations if .hide is
checked out, so I can put confidential dot files in there and only check those dot
files out on trusted systems. I also have, for example, my Mozilla cookies file in
.hide.

It's important to distinguish between such files that I need to put in .hide and
the entire set of private directories, like my mail directory. Yes, I keep my mail in
CVS (except for just-arrived spooled mail, which I keep synced up with a neat
little program called isync that is smarter about mail than CVS is). But it's all in
its own mail/ directory, so I can omit checking that directory out to systems that
I don't trust with my mail or that I don't want to burden with hundreds of
megabytes of mail archives.

While I'm discussing privacy issues, I should mention that I make some bits of
my home directory completely open to the public. This includes a lot of free
software in debian/ and src/, and some handy little programs in bin/. This is
accomplished by permissions. I have to make sure that most directories in the
repository (or at least the top-level directories like mail/) are mode 700, so only
I can access them. Other top-level directories, like bin/, are opened up to mode
755. This allows anonymous CVS access and browsing at cvs.kitenet.net/joey-
cvs/bin/.

This leads to the second rule of CVS home directories: don't import $HOME in
one big chunk; break it up into multiple modules. The structure of your
repository need not mirror the structure of your actual home directory.
Modules can be checked out in different locations to move things around and
control access on a per-module level. There's a layer of indirection there, and
such layers always make things more flexible and more complex.

Some of the projects I work on have their own CVS repositories that are
unconnected to my big home directory repository. That's fine too; I simply
check them out into logical places in my home directory tree as needed. CVS
can even be tweaked to recurse into those directories when updating or
committing.

http://cvs.kitenet.net/joey-cvs/bin
http://cvs.kitenet.net/joey-cvs/bin

Another thing to notice in those lines from my modules file is the use of -u
cvsfix to make the cvsfix program run after CVS updates. That program does a
lot of little things, including ensuring that permissions are correct, setting up
the hard links to files in .hide and so on.

One last thing to mention is the issue of heterogeneous environments and CVS.
Most of my accounts are on systems running varying versions of Debian Linux
on a host of different architectures, but there are accounts on other
distributions, on Solaris and so forth. Trying to make the same dot files work on
everything can be interesting. My .zshrc file, for example, goes to great pains to
detect things like GNU ls, deals with varying zsh versions, sets up aliases to the
best available editor and other commands and so on. Other programs, like
.xinitrc, check the host they're running on and behave slightly (or completely)
differently. I've even at one point had a .procmailrc that filtered mail differently
depending on hostname, though the trick to doing that is lost somewhere in
one of the innumerable versions stored in my repository. I've even resorted in a
few places to files with names of the form filename.hostname—cvsfix finds one
matching the current host and links it to the filename. Branches are also a
possibility, of course, but despite my heavy use of CVS, I still find some corners
of it a black art.

Well I guess that's it. I'd be happy to hear from anyone else who keeps their
home directory in CVS, especially if you have some tricks to share. In the future
I'd like to try checking /etc into CVS too, and if you've successfully done this, I'd
love to talk with you. Now I'm off to commit this file.

Joey Hess (joey@kitenet.net) is a longtime Debian developer who lives on a
farm in Virginia. He enjoys finding new and unlikely places from which to
commit code wirelessly to CVS.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:joey@kitenet.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Multimedia with PD and GEM: a User's Report

Dave Phillips

Issue #101, September 2002

A look at the possibilities of Pd and GEM for Linux-based audio and video.

As a multimedia-capable platform Linux has seen terrific growth over the past
few years. At the system level, a simple kernel patch can now improve
scheduler efficiency and bring performance latencies down to an incredible
three milliseconds or less, well within the acceptable range for professional
audio and video applications. Given the low-latency patch (along with some
other fine-tuning), we can now consider the availability of applications capable
of utilizing this enhancement.

Along with performance artist Chris Spradlin, I am currently working on a
multimedia presentation that combines video playback/processing, still-image
and video projection, and various forms of audio capture, playback and
transformation. Controlling the interplay of the different media poses a
considerable challenge, particularly because we want to do everything in real
time and in Linux. Happily, I have found an excellent solution to our dilemma:
Miller Puckette's remarkable Pd.

From the Simple

Pd (pure data) is an audio synthesis/processing environment similar to the
famous Max (and its Java offspring jMax). These environments employ a neat
scheme of graphically patching various simple components (such as signal
generators/modifiers and their control objects) into complex sonic networks.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/101/5994f1.large.jpg

Figure 1. A Simple Pd Patch

Figure 1 demonstrates Pd's basic principles: the osc~ signal generator creates
an audio waveform (a cosine wave), the slider controls the frequency (pitch) of
the waveform and the network around the dbtorms object modifies the
amplitude (volume) of the generated signal. Finally, the modified signal is sent
to the dac~ object (the digital-to-analog converter) and the results are heard
through the audio system.

Pd includes a variety of ready-made objects for signal generation and
processing, and if this kind of synthesis patching were all Pd could do, it would
still be an impressive audio environment. However, thanks to Mark Danks'
wonderful GEM OpenGL-based graphics library, Pd also can manipulate video
and image parameters in real time. Pd's flexibility permits arbitrary connection
and control between its audio and video streams, creating a powerful
environment for controlling and coordinating multimedia presentations.

In order to use Pd with GEM, you must invoke it via the $HOME/.pdrc file or
with a command string similar to this one:

pd -rt -lib /home/dlphilp/gem-0.87_2/Gem

The -rt option prioritizes Pd's performance to real-time status. When coupled
with a low-latency kernel, Pd's performance is quite acceptable for live shows
and other real-time circumstances. You'll want all the help you can get when
you're running Pd with the GEM library; the kernel latency patch is a godsend,
but you'll still need a hardware-accelerated OpenGL installation to make the
best use of GEM.

https://secure2.linuxjournal.com/ljarchive/LJ/101/5994f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/5994f1.large.jpg

Note: the test system for this article included an 800MHz Duron CPU, 256MB
RAM and a Voodoo3 AGP video card. The Linux kernel version was 2.4.5,
patched for low latency; the video subsystem was XFree86 4.0.1. Certain
operations in GEM are very CPU-intensive, and I would qualify the Voodoo3 as
the low end of acceptable video boards for the Pd/GEM alliance. The audio
system included a Sound Blaster Live! sound card running under the ALSA
0.9.0beta10 driver. Note also that Pd version 0.34-4 (stable) was used along
with IOhannes Zmoelnig's beta version of GEM 0.87. Previous incarnations of
GEM do not include the Linux versions of the pix_movie and pix_film objects
needed for the real-time video manipulations described here.

Figure 2. A Simple Pd/GEM Patch

In Figure 2 we see the basic structure of a simple Pd patch utilizing the GEM
library functions. Note that the gemwin and gemhead objects are required for
all other GEM-related actions. This patch provides the mechanisms for loading
a movie (anim-3.mov in this case) and playing it back while rendering it to the
surfaces of a cube. The cube size is controlled by the slider movement, and the
film can be started and stopped by clicking on the smaller Bang button (one of
the two cyan-colored boxes). Figures 3-5 demonstrate this patch in action. The
first snapshot (Figure 3) illustrates the simplest rendering, with one face of the
cube displayed and expanded to fit most of the rendering window. Figure 4
shows how the rotate object manipulates the cube, and Figure 5 displays the
curious effect that occurs when the slider value exceeds the rendering window
size. Of course the still images can't convey the effect of the movie playing upon
the surfaces of the animated cube, but trust me, it's very cool.

https://secure2.linuxjournal.com/ljarchive/LJ/101/5994f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/5994f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/5994f2.large.jpg

Figure 3. Default Video Display

Figure 4. Video on a Cube

Figure 5. Exploded Video Display

To the Complex

Now let's look at the possibility of combining our two example patches. Using
straightforward cut/copy/paste editing, we easily can copy one patch's contents
into another and start having some serious fun. Pd truly lives up to the promise
of its name: data is purely data here, any data stream can be routed anywhere
within a patch (with some restrictions), and we easily can set up a system in
which one set of controllers simultaneously controls audio and video
parameters.

Figure 6. A Complex Pd/GEM Patch

Figure 6 illustrates our complex combined audio/video patch. As you can see,
the two sliders each simultaneously control an aspect of the video along with
an aspect of the audio. Adjusting the audio amplitude results in an adjustment

of the cube size, while moving the slider for the audio frequency control also
will rotate the cube on its x/y axes. Multimedia artists will find great possibilities
in Pd's support for such arbitrary attachments and correspondences. I also
should note that GEM includes numerous other fascinating pixel-based effects
(such as color convolution and pixel threshold control), but I leave their
exploration to the interested reader.

Project Assessment

Basing our work upon the examples shown here, we are currently planning our
presentation for a two-man show. We hope to use no more than two Linux-
powered laptops (ideally we would need only one) and a variety of external
devices (video recorder/player, still-image projector, lighting displays, etc.). Ease
of transportation is a concern because we would like to be able to take the
show on the road in a single vehicle.

Our Pd audio explorations have been quite stable in performance, which is
good news because we plan to use Pd's real-time audio processing throughout
the piece. GEM 0.87_2 sometimes crashes Pd, but I'm using a beta version as I
write this article. IOhannes Zmoelnig is dedicated to GEM's improvement, so we
reasonably can expect flawless performance by the time we are ready to mount
our first performance (targeted for late 2002). We also have seen that
combining heavy audio and video processing creates a need for more powerful
hardware than we currently employ. I hope to improve our video situation with
the addition of a GeForce3 video card. Finally, we also intend to use Pd's
shoutcast~/oggcast~ objects for broadcasting our performances live over the
Internet.

Conclusion

Pd is incredibly easy to work with, permitting fast construction of relatively
complicated patches. The examples shown here were designed merely as
learning tools and proof-of-concept demonstrations, and I have already created
considerably more complex patches for our project. This article is only a
shallow indicator of the possibilities of Pd and GEM, and I encourage all Linux-
based audio and video artists to get involved with this software.

Acknowledgements

Vast thanks to Miller Puckette and Mark Danks for creating and freely
distributing Pd and GEM. Thanks also to the Pd community for their continuing
assistance to this perpetual newbie, and especially to IOhannes Zmoelnig of
IEM for his beta version of GEM 0.87 and for his unstinting aid while I learn
more about GEM's video objects. Finally, great thanks also must go to Guenter

Geiger for his initial work on the pix_movie object and for his many other
contributions to the Linux versions of Pd and GEM.

Resources

Dave Phillips is a musician, teacher and writer living in Findlay, Ohio. He has
been an active member of the Linux audio community since his first contact
with Linux in 1995. He is the author of The Book of Linux Music & Sound, as
well as numerous articles for Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/101/5994s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Free Software in Brazil

Jon Hall

Issue #101, September 2002

More than saving money, the Software Livre movement offers Brazilian states
control over their technological destinies.

Rio Grande do Sul (RS), one of 16 states in the country of Brazil, has been using
free software (which they call software livre) for several years as a method of
meeting their needs for production software in various areas. By using
software livre, RS has been able to cut software costs. The money they do
spend on software stays in the hands of Brazilian programmers, who buy
Brazilian food, live in Brazilian houses and pay Brazilian taxes. None of the last
three points is lost on the political leaders of RS, and these points are being
learned not only by the other states in Brazil, but a lot of other countries in
South America.

One successful project is called SAGU (sagu.codigoaberto.org.br), a unified
open management system used to automate all of the relationships that exist
between the academic, financial and administrative aspects of a grade school
or university. Highly modular, everything from the entrance exam process to
the financial accounting of overdue library book fees is handled by SAGU. As a
flexible transaction-oriented database system, it allows for many other
functions to be integrated. It can even be integrated with an external
accounting and payroll system. Because a large part of teaching these days
seems to be generating reports for local, state and federal governments, SAGU
has its own reporting tool that generates PostScript documents on the fly.
Originally conceived and implemented at Univates, a branch of the central
university, it is now spreading throughout the Brazilian school and university
system. And (of course) the whole project is software livre, so other school
systems in other countries can benefit.

UERGS (Universidade Estadual do Rio Grande do Sul, www.uergs.rs.gov.br) is a
project in which software is oriented toward distance learning. Designed for a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://sagu.codigoaberto.org.br
http://www.uergs.rs.gov.br

distributed university with more than 22 campuses, the UERGS Project helps
manage the processes involved with that type of learning.

Directo GNU (www.direto.org.br), a corporate mailing solution based on
software livre, is also underway. By using this e-mailing solution on the state's
60,000 computers, the state of RS will save over $10 million US. Through the
use of local knowledge and expertise in setting it up, they also will guarantee
the technological control of the software by RS far into the future. This is an
important consideration if you are thinking about buying mission-critical
software from outside your country.

Speaking of technological control, I was contacted by a company studying
biodiversity in the Brazilian rain forest. Unfortunately, the software the
company (located in Rio de Janeiro) needed was produced only in the United
States, was prohibitively expensive and was also available only in English. This
last point meant that they had to teach English to everyone who needed to use
the software, at least as much English as was needed to use the software, read
the manuals and so on. By using software livre, they were able to reduce the
cost of the software, have it respond in Portuguese, tailor it exactly to their
needs and keep Brazilian programmers and scientists paid. Thus, software livre
allows a company that otherwise could not exist in Brazil to thrive and do good
work.

Likewise, a project called Rede Escolar Livre RS (www.redeescolarlivre.rs.gov.br)
will be supplying educational software to more than 2,000 of Brazil's public
schools. The savings in individual productivity tools and network operational
systems is estimated to be over $24 million US.

In the past few years I have noticed how important geographical information
systems (GIS) are to almost everyone in the world. Most of you are familiar with
mapping programs like MapQuest, MapBlast and others, but the use of GIS
software in planning government and commercial actions is crucial (for more
on this, please see www.freegis.org). In recognition of the need for GIS software
to be free, the project Geoprocessamento Livre (notice the word “Livre”
showing up more and more in these projects?) is a free GIS project to provide
inexpensive GIS software. This GIS software is being used in many strategic
projects, including those dealing with health and education.

The largest bank in RS, if not in all of Brazil, is using Linux in their new ATM
machines. Manufactured by PERTO S.A., the TPC-2100 has the outline of a
distinctive penguin on the CRT screen before you start your transactions. Go
Tux!

http://www.direto.org.br
http://www.redeescolarlivre.rs.gov.br
http://www.freegis.org

Distinctive Penguin on ATMs in Brazil

Probably the most humanly touching project is headed up by a person named
Pascal and concerns the Landless Rural Workers Movement of Brazil
(www.mstbrazil.org). Brazil was settled by a few very wealthy families who
continue to control the vast majority of land in Brazil today. This land
ownership tends to impoverish many in Brazil by withholding the right to grow
their own food or to otherwise earn a living. A movement to help these landless
workers has formed in Brazil, and they have sent a couple dozen people trained
in proprietary software to a central location in RS to be retrained as Linux
system administrators. One woman had traveled four days by bus to get to the
training and would now have to travel back the same way. It was an intensive
month-long course that made each student a part of the fellowship of software
livre and the Landless Rural Workers Movement.

maddog with the Linux System Administrator Class for the Landless Rural Workers Movement

As I travel to various countries that I view to be emerging economies, I see
governments realizing that software livre means more than cheap software. It
also means software tailored to their non-English consumers. It means jobs for
their local programmers. It means industries that can happen inside their own
countries, due to the availability of software that allows these industries to

http://www.mstbrazil.org
https://secure2.linuxjournal.com/ljarchive/LJ/101/6125f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6125f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6125f2.large.jpg

flourish. It means control over their own destiny. It literally means software
livre.

email: maddog@li.org

Jon “maddog” Hall is founder and executive director of Linux International.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:maddog@li.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

2002 Editors' Choice Awards

LJ Staff

Issue #101, September 2002

We present this year's winners and a few honorable mentions.

This year, in order to draw upon a wider base of knowledge and experience, we
made some modifications to the process of choosing the winners of the Linux
Journal Editors' Choice Awards. We started by selecting a board of over 50 Linux
experts, chosen largely from among the best and brightest of Linux Journal
contributors. This board, after receiving the categories, was charged with
coming up with nominees for each. Once we had the nominees and the board's
comments on each one, we passed them on to our contributing editors for
their input. Armed with this information, our editorial team made the final
decisions.

This year, we see an unusual number of free and open-source software
products among the winners. This is not a sign that commercial products are in
decline, either in quantity or quality, but rather a reflection of the maturity of
many open-source projects. There were a number of commercial products that
also ranked highly with the nomination board, and in those cases where one
product received a high number of nominations, but won no award, we
included it as an honorable mention.

Server Appliance: SnapGear Lite/Lite+ SOHO Firewall/VPN Client

We ran a review of the SnapGear Lite in the LJ April 2002 issue
(www.linuxjournal.com/article/5744) and concluded that for the price and
functionality, it can't be beat. For $249-$299 US (depending on whether you get
the Lite or the Lite+) you get, in addition to firewall and NAT functionality, a
hardware-based VPN client that can emulate Microsoft's Point-to-Point
Tunneling Protocol, letting you use a Linux machine to access a Microsoft VPN.

SnapGear's products are based on the SecureEdge platform, developed when
SnapGear was merged with Lineo (in the days when Lineo was in the business

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/096/5744.html

of acquiring companies). SnapGear has spun off into its own company again for
some time now and seems to be doing very well with their line of Linux-based
routers, which allows them pricing significantly lower than much of their
competition.

Honorable Mention: Sun Microsystems' Cobalt Qube

Security Tool: GPG

Did you notice how much more cryptographically signed e-mail you got during
the past year? You should thank the developers of your favorite mailer for
making mail signing, encryption and checking easy, but most of all, thank the
GNU Privacy Guard developers for offering a compatible replacement for the
original Pretty Good Privacy, which vanished in a flurry of—all together now—
Corporate Shenanigans. Now, there's no excuse for not being able to send and
receive secure mail.

Web Server: IBM X-Series

It seems like everybody's making rackmount Linux web servers. What's IBM
have that the others don't? A smooth web ordering process, whatever service
and support level you desire, and they'll support their hardware running Red
Hat, Caldera, SuSE or Turbolinux. Quite a choice.

Honorable Mention: Sun Microsystems' Cobalt RaQ XTR

Enterprise Application Server: Zope

Before the Web, how often did DBAs and graphic designers get a chance to call
each other productivity-sucking idiots or worse? Ever since web site
management got big and professional, we've known that graphic designers
don't want to work on templates, but sites full of static luscious-looking pages
get unmanageable real fast, and the answer is a database and a templating
system.

Now, let the graphics people work with WYSIWYG tools if they like—Zope offers
a clever templating system that makes the templates work in the WYSIWYG tool
when it's time to modify them. Everyone else will appreciate the load-balancing
capability and, of course, the Free Software license.

Technical Workstation: HP x4000

We first saw this machine at LinuxWorld New York, 2002 where it was being
displayed with high-end graphics applications such as Maya for Linux. Our
impressions of its high-performance capabilities were confirmed by the review

we ran in the LJ June 2002 issue, in which reviewer Thad Beier used the words
“shockingly faster” to describe the x4000 in comparison with machines he was
used to. Thad used the machine to run resource-gobbling effects software and
simply was blown away with the performance. As tested, with two 2.2GHz
processors, 4GB of RDRAM, it's not hard to imagine that he would be. Of course
HP ships the x4000 with Linux (Red Hat) preloaded. HP offers the x4000 in a
number of configuration options, so you can get what you need regardless of
whether you're running an effects studio or running complex Verilog
simulations with Icarus.

Web Client: Mozilla and Galeon

As some web browsers have grown huge with features and others have gone
the lean and fast route, we chose two winners. So ask yourself: do you like your
web browser thick and juicy or simply as a thin component of your desktop?
Either way, we don't cut the browser any slack when it comes to honoring the
W3C's standards. Web standards are the only reason we can use the software
of our choice to browse sites that webmasters create with the software of their
choice—it's the social contract that underlies freedom. “No browser does a
better job of standards compliance” is what the Web Standards Project says
about Mozilla, and that's good for everyone. So pick Mozilla, the super-deluxe,
super-themeable browser, and get mail, news, password management and
other power features, or get Galeon, a light browser that doesn't duplicate your
other GNOME applications.

Honorable Mention: Konqueror

Graphics Application: The GIMP

If you're like most Linux users, you fire up The GIMP for miscellaneous image
tasks such as converting and cropping photos for your web site. But The GIMP
is much more than that. It's becoming one of those great platforms, like Perl
and Apache, that becomes a natural starting point for a development and
support community. The GIMP has a lot of functionality that takes awhile to
learn, including not one but two built-in scripting languages. Check out
manual.gimp.org for an on-line manual.

Communication Tool: Evolution Mailer

We've been watching our contributors' headers to see what mailers they use,
and the unthinkable is happening. Linux gurus are dropping text-based mailers
for a GUI mailer called Evolution (more on this disturbing situation as it
develops). Besides mail, Evolution also offers a calendar and to-do list. We like
the idea of being able to compose more than one message at once, but our vi-

http://manual.gimp.org

trained fingers wouldn't get very far without integrating Jason Hildebrand's
gnome-vim.

Consumer Software: KDE 3.0

KDE 2.0 represented real progress toward making Linux a more viable option
for many people on the desktop. There was a lot of great ideas, such as a
super-customizable desktop. Unfortunately, there was also plenty that didn't
work, or at least didn't work right. KDE 3.0, while it doesn't look much different,
offers the goods that KDE 2.0 seemed to promise and more, including a much
higher level of stability and new functionality for many applications, including
Konqueror (like the ability to disable JavaScript pop-up windows) and KMail.
KDE 3.0 gives all these GUI goodies without forgetting the command-line user:
Konsole, the KDE terminal window, also comes with additional functionality and
lets you monitor for new (or no) activity.

Development Tool: Emacs

With all the impressive development tools for Linux coming out of late, it's easy
to ignore the extensive IDE capabilities of Emacs, as Charles Curley points out in
his article on Emacs in the LJ June 2002 issue. Emacs' high level of support for
customization makes it a favorite among hackers. Not only does it support
many languages, but features such as Electric C (for automation of indentation
and pretty printing), spell checking and the ability to act as a front end for GCC,
GDB and CVS make it a sensible choice for a lot of programming needs. For
those unaccustomed to the Free Software world, it's hard to believe it's free—
and it's been there all along.

Honorable Mentions: KDevelop and Borland's Kylix

Database: MySQL

If you're one of the people who has been saying, “I can't use MySQL because it
doesn't have [feature you need here]”, it's time to read up on MySQL 4.0 and try
it out on a development system. Can you say, “full support for transactions and
row-level locking”? “UNION”? “Full text search”?

The new MySQL is even available as a library you can compile into your
application. Proprietary licenses are available if you can't use the GPL.

Honorable Mention: PostgreSQL

Backup Software: Sistina Software's Logical Volume Manager for Linux

No matter what your backup plan is, and what hardware and software you use
to handle the mundane details of copying your working files to off-line storage,
you need to make a copy that's internally consistent. This is especially critical
when you're backing up a database. (For a simple example, say that you keep
your users' home directories by state, and Joe moves from /home/washington/
joe to /home/alabama/joe while you're backing up missouri. Where's Joe's
home directory on the tape? Nowhere!)

Expensive proprietary UNIX systems have had a solution for years: filesystems
that support taking a “snapshot”, which looks like your working filesystem
frozen in time. Instead of “shut down the database, dump it to tape, start up
the database”, it's “shut down the database, snapshot, start up the database,
dump the snapshot to tape”—quite a time-saver. Thanks to Sistina Software,
Linux now has this essential feature for backing up busy servers.

Office Application: OpenOffice 1.0

With Sun now charging for StarOffice 6.0 (with its increased functionality and
the proprietary elements that go with it), it's very nice that they support
OpenOffice and continue to make it available for free. For those who can do
without certain features such as document templates and a grammar checker,
OpenOffice offers an amazing amount of functionality and advanced features
that come very close indeed to matching those of MS Word. Some of these
features are autocorrect/autoformat modes, the ability to compare documents
and include cross-references, fields, an equation editor and global
customization settings. OpenOffice can import OLE objects and charts and does
a pretty good job of both importing and exporting files in the MS Word format.

Mobile Device: Sharp Zaurus

See “Product of the Year” below.

Training and Certification Program: LPI

The Linux Professional Institute reports that more than 10,000 people have
taken the exams to become LPI-certified. Training is available in classroom
settings or on IBM's developerWorks web site, and the exams are tough but
fair. Certification can't promise you a job, but if you get a chance to go for it, it
shows potential employers you are keeping your skills up to date.

Game: TuxRacer

This little open-source game has had more than one million downloads. It
offers nice 3-D graphics, and you even can create your own courses with almost

any paint program (The GIMP, for instance). As former contributing editor Neil
Doane says, “If there's anything better than 3-D high-speed belly surfing
downhill competition penguin racing, I haven't found it.”

Honorable Mention: PySol

Books: Linux Device Drivers, 2nd Edition by Alessandro Rubini and Jonathan Corbet and The

Future of Ideas: The Fate of the Commons in a Connected World by Lawrence Lessig

With the number of political and legal issues surrounding free and open-source
software, and the books written that address them, we thought it best to
choose a winner for both a technical and a nontechnical book this year.

Linux Device Drivers has been a must-have book for people getting into kernel
development, and 2001 saw the release of a 2.4-oriented second edition. You'll
still need your Linux Journal subscription for some of the newer stuff, but this
book is an excellent introduction and field guide to the source code. The paper
format is handy, but you can use the on-line version for previewing and as a
quick reference.

In The Future of Ideas: The Fate of the Commons in a Connected World,
Lawrence Lessig writes,

A time is marked not so much by ideas that are argued
about as by ideas that are taken for granted. The
character of an era hangs upon what needs no
defense. Power runs with ideas that only the crazy
would draw into doubt. The “taken for granted” is the
test of sanity; “what everyone knows” is the line
between us and them.

Thanks to Larry and his latest book, the public nature of the Net has a far better
chance of being taken for granted than it ever would have had without them.

Before Larry began writing and talking about the “end-to-end” architecture of
the Net and its place-like nature as a “Commons”, those ideas were taken for
granted by a rather small us—a population that surely included the majority of
Linux Journal readers. It may take some time before everyone knows and
agrees with these ideas; but they are spreading fast. After they achieve ubiquity
(and we have faith they will), Professor Lessig will be remembered as one of the
Net's true heroes.

Web Site: Google

What more can you say about the world's growing dependency on more than
10,000 Linux boxes behind the most popular search engine? Never in the

history of the Web has there been a site that has done more with less hype
than Google. Its few self-serving messages do little or nothing to compromise
the vast white space that surrounds the one thing people come there to use:
the search box. Paid advertising appears alongside search results, but it never
intrudes. And so much of it is useful to both seller and searcher that Google
actually has a going business that makes money.

In the last year or so the company has added image and newsgroup searches
to its front page, and a catalog engine has been in the works as well. And lately,
the company has added an API that lets developers query web documents
using SOAP and WSDL protocols for noncommercial purposes.

The search engine also acts, in an oblique manner, as an anti-censorship tool.
Google will remove pages from its index in response to take-down letters
written under the controversial Digital Millennium Copyright Act, but there's a
catch for would-be DMCA censors. After the Church of Scientology attacked the
exposé site xenu.net, Google began reporting take downs to the free speech
watchdog site chillingeffects.org. When corporations try to censor Google
results, they just bring more attention to their victims.

While Google's policies may not please everybody, it has kept better faith with
users than any other search engine, and for that it deserves all its ample
success.

Product of the Year: Sharp Zaurus

Two words describe this past year: Zaurus Frenzy. We dig Trolltech's palmtop
Qtopia environment, based on the popular Qt toolkit. It's got all the classic PDA
stuff, such as address book and calendar, plus a selection of nifty games and
good office and web software.

The Qtopia development boom owes a lot to the shining promise of the first
Qtopia-based product, Sharp's Zaurus PDA, which offers all the hardware
features you might want, including optional wireless networking, high-quality
audio, a keyboard and a replaceable, rechargeable battery.

Our embedded Linux news archive for 2001 was full of companies committing
to offer applications, services and training for Qtopia and the Zaurus. When you
get one you'll know why.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://xenu.net
http://chillingeffects.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Fire, Brimstone and Real-Time Linux

Rick Lehrbaum

Issue #101, September 2002

Debate continues over the best approach to real-time capabilities and the Linux
kernel.

Though fewer than 10% (or less) of embedded Linux applications actually
require real-time enhancements or add-ons, articles and discussions on that
subject invariably spark passionate debate. For whatever reason, the topic is a
magnet for what might be characterized best as a sort of religious fervor. So it
is with some tiptoeing through a minefield that this month's embedded column
begins with several topics related to real-time Linux. Hold on to your hats.

VDC Sees Real-Time Linux Support Opportunity

In their recently published research report “Linux's Future in the Embedded
Systems Market”, Venture Development Corp. (VDC) concluded that the
availability of real-time solutions for Linux are needed to accelerate the broad
adoption of Linux in embedded designs.

The report analyzes the current size and future growth of the worldwide
market for embedded Linux software solutions (www.vdc-corp.com). According
to the study, the dominant factors favoring the use of Linux in embedded
projects include the availability of source code, royalty-free options and
reliability. On the other hand, VDC found “real-time limitations” to be the most
common issue cited by embedded developers as inhibiting their adoption of
Linux for future projects.

Here is a list, in ranked order, of what developers told VDC were their main
concerns with respect to using Linux in embedded systems and devices:

1. Real-time limitations
2. Doubts about availability and quality of support
3. Fragmentation concerns

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.vdc-corp.com

4. Doubts about vendor longevity
5. Footprint size
6. Other

The Great Real-Time Linux Debate (Redux)

The usual real-time debate erupted shortly after Embedded Linux Journal
published the third article in a series by Kevin Dankwardt on real-time Linux
technologies. Here's an outline of the sequence of reactions and responses
from key players in the real-time Linux market, followed by a pointer to where
you can read them all on-line:

• MontaVista Software's Kevin Morgan issued a response to Dankwardt's
article in which he offered “a few clarifications (or points of view)”.

• Victor Yodaiken and Matt Sherer (of FSMLabs) reacted to Kevin Morgan's
response to Dankwardt's article, taking exception to Morgan's assertion
that RTLinux is “not appropriate for the placement of comprehensive
applications”.

• Kevin Morgan clarified the status of MontaVista's kernel preemption
enhancements and responded to several other issues raised in Yodaiken
and Sherer's earlier comments.

• Karim Yaghmour provided “the RTAI perspective”--drawing attention to
the nature of the API, the usability of the methods and distinctions in the
overall openness of the specific approaches being compared.

• Doug Locke, TimeSys' VP of technology, contrasted his company's
preemptible Linux implementation with the one pioneered by MontaVista
and commented on several aspects of the preceding debate.

You can access all the above, including the original three-part ELJ article by
Kevin Dankwardt, from this summary page: www.linuxdevices.com/news/
NS4265889552.html.

Still More on Real Time

Clark Williams of Red Hat wrote a whitepaper titled “Linux Scheduler Latency”,
in which he compares the performance of two popular methods for improving
Linux kernel preemption latency—the preemption patch pioneered by
MontaVista and the low-latency patch pioneered by Ingo Molnar—and
discovers that the best approach might be a combination of the two
(www.linuxdevices.com/articles/AT8906594941.html).

The ADEOS Project announced its first release of ADEOS, a hardware
abstraction layer that allows a real-time kernel and a general-purpose kernel to
coexist on one CPU. The announcement claims that “RTAI will eventually use

http://www.linuxdevices.com/news/NS4265889552.html
http://www.linuxdevices.com/news/NS4265889552.html
http://www.linuxdevices.com/articles/AT8906594941.html

ADEOS services, thus offering a real-time kernel based on a principle clearly
different from the 5,995,745 US Patent”, aka the “RTLinux patent”
(www.freesoftware.fsf.org/adeos).

Victor Yodaiken published a whitepaper that points out the disadvantages of
dealing with the issue of “priority inversion” in real-time systems by means of a
commonly used method known as “priority inheritance”. Priority inversion
refers to the situation when a scheduled task must wait for a lower-priority task
to complete. In the whitepaper, Yodaiken describes “the classical nightmare
case” of priority inversion as being “when a low priority task owns a resource, a
high priority task is blocked [and] waiting for the resource, and intermediate
priority tasks keep preempting the low priority task so it cannot make progress
toward releasing the resource.” Yodaiken says the technique of priority
inheritance is intended to allow:

a task that is blocked waiting for a resource [to pass]
its priority down to the owner. The low priority task is
[thus] considered to be acting on behalf of the highest
priority blocked task and inheritance prevents
intermediate priority tasks from interfering.

However, “priority inheritance is neither efficient nor reliable”, the paper
argues, and its “implementations are either incomplete (and unreliable) or
surprisingly complex and intrusive”, asserts Yodaiken (www.linuxdevices.com/
articles/AT7168794919.html).

Red Hat “Adjusts” Its Embedded Strategy

Red Hat discontinued development of its eCos open-source embedded
operating system and is rumored to have discontinued many of its embedded
Linux development efforts.

Asked whether Red Hat was still in the embedded market, Red Hat Chief
Technology Officer Michael Tiemann replied, “Yes—but our strategy is to
expand the scope of Linux to encompass the embedded space.” Expanding on
this point, Tiemann said “the embedded world that [Red Hat is] most interested
in needs a Linux platform that extends into the embedded space”, as opposed
to a unique version of Linux tailored specifically to embedded devices.

These statements explain Red Hat's move away from products like eCos, an
open-source embedded operating system that Red Hat inherited via its
acquisition of Cygnus Solutions in late 1999, and µClinux, a version of Linux
geared toward resource-constrained, “deeply embedded” devices that Red Hat
got involved in via its mid-2000 acquisition of Wirespeed. In addition, Tiemann's
reduced investment statements explain Red Hat's developing embedded-
oriented tools, like the Embedded Linux Developers Suite (ELDS).

http://www.freesoftware.fsf.org/adeos
http://www.linuxdevices.com/articles/AT7168794919.html
http://www.linuxdevices.com/articles/AT7168794919.html

Tiemann elaborates on what he means by “a Linux platform that extends into
the embedded space” in a guest editorial for LinuxDevices.com entitled, “How
Linux will Revolutionize the Embedded Market” (www.linuxdevices.com/articles/
AT7248149889.html). That editorial basically unfolds a strategy that treats the
embedded market as a portion of a continuum—one that increasingly
demands greater consistency of technology, APIs, middleware and tools, due to
growing end-to-end application connectivity and interoperability.

The best approach, Tiemann argues, is to offer a solution that meets the needs
of the entire range of requirements within a single platform, rather than
providing a unique version of Linux specially tailored to embedded systems.
Quoting from the conclusion,

The deeper I look into environments adopting Linux,
from embedded to enterprise, the more I believe that
Linux has the requisite DNA and development model
to scale truly from embedded to enterprise as a single
platform, and Red Hat's focus will remain on ensuring
that what works for the mainframe, and the server,
and the workstation, also works for the appliance, the
carrier, the router, the PDA, and the cell phone; and, of
course, vice-versa.

Three Reviews on Hollabaugh's Embedded Linux

Finally, here are links to three excellent on-line reviews of Craig Hollabaugh's
well-received book, Embedded Linux:

• Two reviews from the Embedded Linux Consortium, by Joel Williams and
Dr. Ian McLoughlin (FTP download available at embedded-linux.org/files/
Review1.pdf).

• One from LinuxDevices.com, by Jerry Epplin (www.linuxdevices.com/
articles/AT8515229385.html).

Embedded Linux is published by Addison-Wesley Professional (ISBN:
0672322269) and is available at various on-line retailers. Amazon.com provides
43 sample pages of the book on their web site.

Rick Lehrbaum (rick@linuxdevices.com) created the LinuxDevices.com and
DesktopLinux.com web sites. Rick has worked in the field of embedded systems
since 1979. He cofounded Ampro Computers, founded the PC/104 Consortium
and was instrumental in creating and launching the Embedded Linux
Consortium.

Archive Index Issue Table of Contents

 Advanced search

http://www.linuxdevices.com/articles/AT7248149889.html
http://www.linuxdevices.com/articles/AT7248149889.html
http://embedded-linux.org/files/Review1.pdf
http://embedded-linux.org/files/Review1.pdf
http://www.linuxdevices.com/articles/AT8515229385.html
http://www.linuxdevices.com/articles/AT8515229385.html
mailto:rick@linuxdevices.com
http://LinuxDevices.com
http://DesktopLinux.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Memory Leak Detection in Embedded Systems

Cal Erickson

Issue #101, September 2002

Cal discusses mtrace, dmalloc and memwatch—three easy-to-use tools that
find most application program errors.

One of the problems with developing embedded systems is the detection of
memory leaks; I've found three tools that are useful for this. These tools are
used to detect application program errors, not kernel memory leaks. Two of
these tools (mtrace and dmalloc) are part of the MontaVista Linux Professional
Edition 2.1 product. The other (memwatch) is available from the Web (see
Resources).

C and C++ programmers control dynamic memory allocation. Reckless use of
this control can lead to memory management problems, which cause
performance degradation, unpredictable execution or crashes.

Some of the problems that cause memory leaks are writing or reading beyond
an allocated memory segment or trying to free memory that has already been
freed. A memory leak occurs when memory is allocated and not freed after use,
or when the pointer to a memory allocation is deleted, rendering the memory
no longer usable. Memory leaks degrade performance due to increased paging,
and over time, cause a program to run out of memory and crash. Access errors
lead to data corruption, which causes a program to behave incorrectly or crash.
When a program runs out of memory it also can cause the Linux kernel to
crash.

Designing and programming an embedded application requires great care. The
application must be robust enough to handle every possible error that can
occur; care should be taken to anticipate these errors and handle them
accordingly—especially in the area of memory. Often an application can run for
some time before it mysteriously crashes itself or the system as a result of a
memory allocation that is never freed. Finding these errors can be done
through use of memory leak detectors.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

These tools work by replacing malloc, free and other memory management
calls. Each tool has code that intercepts calls to malloc (and other functions)
and sets up tracking information for each memory request. Some tools
implement memory protection fences to catch errant memory accesses.

Some of the leak detection programs are very large and require a virtual
memory image of the program being searched. This requirement makes it very
difficult to use on embedded systems. However, mtrace, memwatch and
dmalloc are simple programs that find most errors.

All three tools were run on one example C program containing common
memory handling errors. This program, together with Makefiles for building it
with the three tools, is available as a downloadable file at ftp.linuxjournal.com/
pub/lj/listings/issue101/6059.tgz. All of these tools have been used in several
different target architectures. The example code will work whether compiled
natively or cross-compiled.

mtrace

The simplest of the three tools is mtrace. A feature of the GNU C library, mtrace
allows detection of memory leaks caused by unbalanced malloc/free calls. It is
implemented as a function call, mtrace(), which turns on tracing and creates a
log file of addresses malloc'd and freed. A Perl script, also called mtrace,
displays the log file, listing only the unbalanced combinations and—if the
source file is available—the line number of the source where the malloc
occurred. The tool can be used to check both C and C++ programs under Linux.
One of the features that makes mtrace desirable is the fact that it is scalable. It
can be used to do overall program debugging but can be scaled to work on a
module basis as well.

Key to the use of the mtrace feature are three items: include mcheck.h, set the
MALLOC_TRACE environment variable and call the mtrace() function call. If the
MALLOC_TRACE variable is not set, mtrace() does nothing.

The output of mtrace includes messages such as:

- 0x0804a0f8 Free 13 was never alloc'd
/memory_leak/memory_leaks/mtrace/my_test.c:193

to indicate memory that was freed but never malloc'd and a “Memory not
freed” section that includes the address, size and line number of calls to malloc
for which no free occurred.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/101/6059.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/101/6059.tgz

memwatch

memwatch is a program that not only detects malloc and free errors but also
fencepost conditions. Fencepost conditions occur when writing data into an
allocated chunk of memory (allocated by malloc) and the data goes beyond the
end of the allocated area. Some things that memwatch does not catch are
writing to an address that has been freed and reading data from outside the
allocated memory.

The heart of memwatch is the memwatch.c file. It implements the wrappers
and code for the address checking. To use memwatch the file memwatch.h
must be included in the source. The variables MEMWATCH and MW_STDIO
must be defined on the compile command line (-DMEMWATCH and -
DMW_STDIO). The memwatch.c file must be used with the application as well.
The object module from the compile of memwatch.c must be included in the
link of the application. Upon execution of the application, a message will
appear on stdout if memwatch found any abnormalities. The file memwatch.log
is created that contains the information about the errors encountered. Each
error message contains the line number and source-code filename where the
error occurred.

Comparing memwatch.log with the log from mtrace, the same errors are
reported. The memwatch tool also found a fencepost condition where the
memory addresses were changed to overwrite the start and end of an allocated
area, showing the expanded capability of memwatch in this case. The
disadvantage is that memwatch is not scalable. It has to run on the whole
application.

dmalloc

The third tool is a library that is designed as a drop-in substitute for malloc,
realloc, calloc, free and other memory management functions. It provides
runtime configurability. The features of the tool provide memory leak tracing
and fencepost write detection. It reports its errors by filename and line number
and logs some general statistics. This library, created and maintained by Gray
Watson, has been ported to many operating systems other than Linux.

The package is configurable to include thread support and C++ support. It can
be built both as shared and static libraries. All of these options are selected
when building the tool. The result is a set of libraries that are used when linking
the application program. There is an include file (dmalloc.h) that needs to be
included in the source of the application to be checked. In addition to the
library and include file, it is necessary to have an environment variable set up
that dmalloc reads to configure how it checks and where it puts the logging

information. The following line is the setup used with the test program for
dmalloc:

export \
DMALLOC_OPTIONS=debug=0x44a40503,inter=1,log=logfile

What this means is 1) log is a file named logfile in the current directory, 2) inter
is the frequency for the library to check itself and 3) debug is a hex number
whose bits select the types of checking to do. This example tests for just about
every possible error. The following is a list of the tests and the corresponding
bits to set in “debug”:

• none (nil): no functionality (0)
• log-stats (lst): log general statistics (0x1)
• log-non-free (lnf): log non-freed pointers (0x2)
• log-known (lkn): log only known non-freed (0x4)
• log-trans (ltr): log memory transactions (0x8)
• log-admin (lad): log administrative info (0x20)
• log-blocks (lbl): log blocks when heap-map (0x40)
• log-bad-space (lbs): dump space from bad pointers (0x100)
• log-nonfree-space (lns): dump space from non-freed pointers (0x200)
• log-elapsed-time (let): log elapsed time for allocated pointer (0x40000)
• log-current-time (lct): log current time for allocated pointer (0x80000)
• check-fence (cfe): check fencepost errors (0x400)
• check-heap (che): check heap adm structs (0x800)
• check-lists (cli): check free lists (0x1000)
• check-blank (cbl): check mem overwritten by alloc-blank, free-blank

(0x2000)
• check-funcs (cfu): check functions (0x4000)
• force-linear (fli): force heap-space to be linear (0x10000)
• catch-signals (csi): shut down program on SIGHUP, SIGINT, SIGTERM

(0x20000)
• realloc-copy (rco): copy all re-allocations (0x100000)
• free-blank (fbl): overwrite freed memory space with BLANK_CHAR

(0x200000)
• error-abort (eab): abort immediately on error (0x400000)
• alloc-blank (abl): overwrite newly alloced memory with BLANK_CHAR

(0x800000)
• heap-check-map (hcm): log heap-map on heap-check (0x1000000)
• print-messages (pme): write messages to stderr (0x2000000)
• catch-null (cnu): abort if no memory available (0x4000000)

• never-reuse (nre): never reuse freed memory (0x8000000)
• allow-free-null (afn): allow the frees of NULL pointers (0x20000000)
• error-dump (edu): dump core on error and then continue (0x40000000)

If the library needs to check C++ programs, a source file named dmalloc.cc is
needed with the application. This module provides wrapper functions for new
to malloc and delete to free. The GNU debugger GDB can be used with dmalloc.
A file is included with the product that can be used as part of a .gdbinit file so
that GDB is set up automatically to know about dmalloc.

Along with the library is a utility named dmalloc that will programmatically set
up the DMALLOC_OPTIONS variable. I've made a setup script that is sourced
prior to running the program to be debugged. This way the setup is repeatable
without errors.

This article only covers the general use of the tool, but the documentation for it
is extensive and details more available features. The test program used with
the earlier tools was run using DMALLOC. The results can be lengthy and
optionally include the bytes present at critical areas of memory such as the
“fence-top”, where a pointer overruns a malloc'd area. The end of the log file
includes statistics, addresses, block sizes and line numbers for occurrences of
malloc without free.

The three tools provide varying support for memory leak detection and
reporting. Each of these tools has been used on a Linux workstation as well as
cross-compiled and executed on several different target architectures. In one
application, developers used all three tools. mtrace was used to find a memory
leak in a third-party C++ library where an exception throw/catch block caused a
major leak. The dmalloc tool was used to find memory leaks in the execution of
Linux pthreaded applications. The memwatch tool was used to catch a buffer
pool mechanism that was not properly defragmenting itself. These tools are
small and easy to implement and remove when debugging is completed.

The example program consists of one source file, my_test.c. There are three
separate directories that contain a README, Makefile and a script to run the
test [available at ftp.linuxjournal.com/pub/lj/listings/issue101/6059.tgz]. In the
dmalloc test, the environment setup script is also available. Each of the tests
has been built on Red Hat and SuSE Linux releases, as well as the MontaVista
Linux cross-development environments.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/listings/101/6059.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/101/6059s1.html

Cal Erickson (cal_erickson@mvista.com) currently works for MontaVista
Software as a senior Linux consultant. Prior to joining MontaVista, he was a
senior support engineer at Mentor Graphics Embedded Software Division. Cal
has been in the computing industry for over 30 years with experience at
computer manufacturers and end-user development environments.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:cal_erickson@mvista.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

In-Memory Database Systems

Steve Graves

Issue #101, September 2002

IMDSes are especially useful for embedded development, where every saved
process shrinks the footprint and the bottom line.

Growth in intelligent connected devices is soaring. Whether in the home, the
pocket or built into industrial communications and transportation systems,
such gear has evolved to include powerful CPUs and sophisticated embedded
systems software. One type of software increasingly seen within such devices is
the database management system (DBMS). While familiar on desktops and
servers, databases are a recent arrival to embedded systems. Like any
organism dropped into a new environment, databases must evolve. A new type
of DBMS, the in-memory database system (IMDS), represents the latest step in
DBMSes' adaptation to embedded systems.

Why are embedded systems developers turning to databases? Market
competition requires that devices like set-top boxes, network switches and
consumer electronics become “smarter”. To support expanding feature sets,
applications generally must manage larger volumes of more complex data. As a
result, many device developers find they are outgrowing self-developed data
management solutions, which can be especially difficult to maintain and extend
as application requirements increase.

In addition, the trend toward standard, commercial off-the-shelf (COTS)
embedded operating systems—and away from a fragmented environment of
many proprietary systems—promotes the availability of databases. The
emergence of a widely used OS such as embedded Linux creates a user
community, which in turn spurs development (both commercially and
noncommercially) of databases and other tools to enhance the platform.

So device developers are turning to commercial databases, but existing
embedded DBMS software has not provided the ideal fit. Embedded databases
emerged well over a decade ago to support business systems, with features

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

including complex caching logic and abnormal termination recovery. But on a
device, within a set-top box or next-generation fax machine, for example, these
abilities are often unnecessary and cause the application to exceed available
memory and CPU resources.

In addition, traditional databases are built to store data on disk. Disk I/O, as a
mechanical process, is tremendously expensive in terms of performance. This
often makes traditional databases too slow for embedded systems that require
real-time performance.

In-memory databases have emerged specifically to meet the performance
needs and resource availability in embedded systems. As the name implies,
IMDSes reside entirely in memory—they never go to disk.

So is an IMDS simply a traditional database that's been loaded into memory?
That's a fair question because disk I/O elimination is the best-known aspect of
this new technology. The capability to create a RAM disk, a filesystem in
memory, is built into Linux. Wouldn't deploying a well-known database system,
such as MySQL or even Oracle, on such a disk provide the same benefits?

In fact, IMDSes are considerably different beasts from their embedded DBMS
cousins. Compared to traditional databases, IMDSes are less complex. Beyond
the elimination of disk I/O, in-memory database systems have fewer moving
parts or interacting processes. This leads to greater frugality in RAM and CPU
use and faster overall responsiveness than can be achieved by deploying a
traditional DBMS in memory. An understanding of what's been designed out of,
or significantly modified in, IMDSes is important in deciding whether such a
technology suits a given project. Three key differences are described below.

Caching

Due to the performance drain caused by physical disk access, virtually all
traditional DBMS software incorporates caching to keep the most recently used
portions of the database in memory. Caching logic includes cache
synchronization, which makes sure that an image of a database page in cache
is consistent with the physical database page on disk. Cache lookup also is
included, which determines if data requested by the application is in cache; if
not, the page is retrieved and added to the cache for future reference.

These processes play out regardless of whether a disk-based DBMS is deployed
in memory, such as on a RAM disk. By eliminating caching, IMDS databases
remove a significant source of complexity and performance overhead, and in
the process slim down the RAM and CPU requirements of the IMDS.

Data-Transfer Overhead

Consider the handoffs required for an application to read a piece of data from
a traditional disk-based database, modify it and write that piece of data back to
the database. The process is illustrated in Figure 1.

1. The application requests the data item from the database runtime
through the database API.

2. The database runtime instructs the filesystem to retrieve the data from
the physical media.

3. The filesystem makes a copy of the data for its cache and passes another
copy to the database.

4. The database keeps one copy in its cache and passes another copy to the
application.

5. The application modifies its copy and passes it back to the database
through the database API.

6. The database runtime copies the modified data item back to database
cache.

7. The copy in the database cache is eventually written to the filesystem,
where it is updated in the filesystem cache.

8. Finally, the data is written back to the physical media.

These steps cannot be turned off in a traditional database, even when
processing takes place entirely within memory. And this simplified scenario
doesn't account for the additional copies and transfers required for transaction
logging!

Figure 1. Data flow in a traditional DBMS. Red lines represent data transfer. Gray lines
represent message path.

In contrast, an in-memory database system entails little or no data transfer. The
application may make copies of the data in local program variables, but it is not
required. Instead, the IMDS gives the application a pointer that refers directly to
the data item in the database, enabling the application to work with the data
directly. The data is still protected because the pointer is used only through the
database API, which insures that it is used properly. Elimination of multiple data
transfers streamlines processing. Cutting multiple data copies reduces memory
consumption, and the simplicity of this design makes for greater reliability.

Transaction Processing

In the event of a catastrophic failure, such as loss of power, a disk-based
database recovers by committing complete transactions or rolling back partial
transactions from log files when the system restarts. Disk-based databases are
hard-wired to keep transaction logs, to flush transaction log files and to cache
to disk after transactions are committed.

Main memory databases also provide transactional integrity. To do this, the
IMDS maintains a before image of the objects that are updated or deleted and
a list of database pages added during a transaction. When the application
commits the transaction, the memory for before images and page references
returns to the memory pool (a fast and efficient process). If an in-memory
database must abort a transaction (for example, if the inbound data stream is
interrupted), the before images are restored to the database and the newly
inserted pages are returned to the memory.

In the event of catastrophic failure, the in-memory database image is lost. This
is a major difference from disk-based databases. If the system is turned off, the
IMDS is reprovisioned upon restart. Consequently, there is no reason to keep
transaction log files, and another complex, memory-intensive task is eliminated
from the IMDS.

This functionality may not suit every application, but in the embedded systems
arena, examples abound of applications with data stores that can be easily
replenished in real time. These include a program guide application in a set-top
box that downloads from a satellite or cable head-end, a wireless access point
provisioned by a server upstream or an IP routing table that is repopulated as
protocols discover network topology. Developers of such systems gladly limit
the scope of transaction processing in exchange for superior performance and
a smaller footprint.

This does not preclude the use of saved local data. With an IMDS, the
application can open a stream (a socket, pipe or a file pointer) and instruct the
database runtime to read or write a database image from or to the stream. This
feature could be used to create and maintain boot-stage data, i.e., an initial

starting point for the database. The other end of the stream can be a pipe to
another process or a filesystem pointer (any filesystem, whether it's magnetic,
optical or Flash).

Application Scenario: IP Routers

Where and how can IMDS technology make a difference? While in-memory
databases have cropped up in various application settings, the following
scenario, involving embedded software in the most common internet
infrastructure device—the IP router, offers an idea of the problems this
technology can address.

Modern IP routers incorporate routing table management (RTM) software that
accomplishes the core task of determining the next hop for data packets on the
Internet and other networks. Routing protocols continuously monitor available
routes and the status of other routing devices, then update the device's routing
table with current data.

These routing tables typically exist as proprietary outgrowths of the RTM
software. This solution is one of the principal challenges in developing next-
generation routers. As device functionality increases, routing table
management presents a significant programming bottleneck. Lacking support
for the complex data types and multiple access methods that are hallmarks of
databases, self-developed routing table management (RTM) structures provide
a limited toolset.

In addition, like any data management solution that is hard-wired to the
application it supports, routing tables encounter difficulties in extensibility and
reliability. Changes made to the data management code reverberate through
the entire RTM structure, causing unwanted surprises and adding to QA cycles.
Scalability is also an issue: self-developed data management that works well for
a given task often stumbles when the intensity of use is ratcheted up. The
result is that while the Internet's growth requires rapid advances in routing
technology, this device evolution is slowed by software architecture that has
outlived its usefulness.

Under such conditions, using a database would seem to be a no-brainer. But
deploying a traditional DBMS within an IP router is problematic. Real-time
internet address lookups won't accommodate the latency required to go to disk
and perform the caching, transaction logging and other processes that are part
and parcel of disk-based DBMSes.

In addition, imposing a large database footprint within the router necessitates
more RAM and a more powerful CPU. This adds to the overall device cost, and
the market for routers is price-competitive. Even a slightly lower per-unit price

increases the manufacturer's market share, and a lower per-unit cost drops
right to the bottom line. Software that saves RAM, or requires a less expensive
processor, can determine product success.

The emergence of in-memory databases allows the application of DBMS
technology to many embedded systems. For developers of embedded systems,
proven database technology provides benefits including optimized access
methods and data layout, standard and simplified navigation methods, built-in
concurrency and data integrity mechanisms, and improved flexibility and fault
tolerance. Adoption of this new breed of DBMS simplifies embedded system
development while addressing growing software complexity and ensuring high
availability and reliability.

Steve Graves is president and cofounder of McObject, developer of the
eXtremeDB in-memory database system. As president of Raima Corporation,
he helped pioneer the use of DBMS technology in embedded systems, working
closely with companies in building database-enabled intelligent devices. A
database industry veteran, Graves has held executive-level engineering,
consulting and sales/marketing positions at several public and private
technology companies.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Kernel Hacker's Guide to Source Code Control

Greg Kroah-Hartman

Issue #101, September 2002

Greg explains how to use patch and diff or BitKeeper for kernel development.

Many issues involved with Linux kernel development are different from
traditional software development processes. When working on a portion of the
kernel (or a specific driver), you need to 1) stay aware of changes that are
happening to other portions of the kernel with which you interact, 2) constantly
apply your changes to the moving target of a fast-based kernel development
release schedule, 3) resolve any merge conflicts between changes you have
made and changes made by other people and 4) be able to export your
changes in a format others can use easily.

For a number of years, I developed and maintained the USB to serial port
drivers and then eventually took over maintaining all of the USB code in the
kernel. In this article, I explain some of the tools I used in the past to do this
work and show how some new tools have enhanced my ability to keep on top
of changes in the kernel and let me do my job with less effort.

patch and diff

One of the most common methods of doing kernel work is to use the patch and
diff programs. You can use this and no other type of source-code control
system to do kernel development. One way is to use two different directory
trees: a “clean” one and a “working” one. The clean tree is a released kernel
version, while the working one is based on the same released kernel version,
but contains your modifications. Then you can use patch and diff to extract
your changes and forward port these changes to a new kernel release. For
example, let's start off with a clean 2.4.18 kernel (available at www.kernel.org/
pub/linux/kernel/v2.4/linux-2.4.18.tar.gz) in our working directory:

$ ls
linux-2.4.18.tar.gz

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.kernel.org/pub/linux/kernel/v2.4/linux-2.4.18.tar.gz
http://www.kernel.org/pub/linux/kernel/v2.4/linux-2.4.18.tar.gz

Uncompress this kernel, and then rename the created directory, which will be
called “linux” to something that makes sense:

$ tar -zxf linux-2.4.18.tar.gz
$ mv linux linux-2.4.18
$ ls
linux-2.4.18 linux-2.4.18.tar.gz

Now create a duplicate version of this kernel version, and name it something
else:

$ tar -zxf linux-2.4.18.tar.gz
$ mv linux linux-2.4.18-greg
$ ls
linux-2.4.18 linux-2.4.18-greg linux-2.4.18.tar.gz

Now we can do all of our development in our -greg directory and leave the
clean, original kernel directory alone. After we are finished with our work, we
need to create a patch to send to other people. The Documentation/
SubmittingPatches file explains the proper format that most kernel developers
like for sending and receiving patches. It also explains the usage of a dontdiff
file, which can help with generating these patches. The dontdiff file can be
found at www.moses.uklinux.net/patches/dontdiff and contains a list of files
that you do not want to have the diff program pay attention to.

To create a patch, use the following command:

$ diff -Naur -X dontdiff \
linux-2.4.18 linux-2.4.18-greg/ > my_patch

This creates a file called my_patch that contains the difference between your
work and a clean 2.4.18 kernel tree. This patch then can be sent to other people
via e-mail.

New Kernel Versions

If a new kernel version is released, and you want to forward port your changes
to the new version, you need to try to apply your generated patch onto a clean
kernel version. This can be done in the following steps:

1. Generate your original patch, as in the previous example.
2. Using the official patch from kernel.org, move the old kernel version

forward one release:

$ cd linux-2.4.18
$ patch -p1 < ../patch-2.4.19
$ cd ..
$ mv linux-2.4.18 linux-2.4.19

1. Move your working directory forward one release by removing your patch,
then applying the new update:

http://www.moses.uklinux.net/patches/dontdiff
http://kernel.org

$ cd linux-2.4.18-greg
$ patch -p1 -R < ../my_patch
$ patch -p1 < ../patch-2.4.19
$ cd ..
$ mv linux-2.4.18-greg linux-2.4.19-greg

1. Try to apply your patch on top of the new update:

$ cd linux-2.4.19-greg
$ patch -p1 < ../my_patch

If your patch does not apply cleanly, resolve all of the conflicts that are created
(patch will tell you about these, leaving behind .rej and .orig files for you to
compare and fix up manually using your favorite editor). This merge process
can be the most difficult part if you have made changes to portions of the
source tree that have been changed by other people.

If you use this development process, I highly recommend getting the excellent
patchutils set of programs (found at cyberelk.net/tim/patchutils). These
programs enable you to manipulate text patches easily in all sorts of useful
ways, and they have saved kernel developers many hours of tedious work.

Directory Tip

Source Code Control

The process of kernel development using patch and diff generally works quite
well. But after a while, most people grow tired of it and look for a different way
to work that does not involve so much tedious patching and merging.

A few years ago I discovered BitKeeper (available at www.bitmover.com) and
have been using it ever since for kernel development. It originally enabled me
to track easily external changes to the kernel tree and allowed me to forward
port my kernel changes with almost no effort. Now that Linus Torvalds and
Marcelo Tosatti are using BitKeeper for their kernel development, it also allows
me to send patches to them easily for inclusion into the main kernel tree.

The use of BitKeeper as a kernel development tool is one that a lot of people
find contentious, given BitKeeper's licensing strategy. Read over the license and
decide for yourself if you should use it. You also should go through the tutorial
on the BitMover web site to familiarize yourself with the tool and some of the
different commands.

To do kernel work with BitKeeper, you can base your kernel off Linus' or
Marcelo's kernel tree, or you can create your own, with all of the different
versions. However, unless you are planning on using BitKeeper to send your
patches to Linus or Marcelo, I recommend creating your own kernel tree. That

http://cyberelk.net/tim/patchutils
https://secure2.linuxjournal.com/ljarchive/LJ/101/6183s1.html
http://www.bitmover.com

way you are not buried in the vast number of different changesets that all of
the different kernel developers are creating, and you can focus on your work.

Two Trees

Again, with BitKeeper you end up creating two different trees (or repositories as
I will now call them) to do kernel work: a clean tree and a working tree.

To create a clean BitKeeper repository, start with a released kernel in your
working directory:

$ ls
linux-2.4.18.tar.gz

Uncompress this kernel:

$ tar -zxf linux-2.4.18.tar.gz
$ ls
linux linux-2.4.18.tar.gz

Now create a BitKeeper project called linux-2.4:
$ bk setup linux-2.4

BitKeeper will ask you a few questions and then provide a file to edit where you
should describe your project. Fill this out with your favorite editor, and save it.

You will now have a directory called linux-2.4, which is where your project will
be held. Now import the original kernel version into the new repository:

$ ls
linux linux-2.4 linux-2.4.18.tar.gz
$ bk import -tplain linux linux-2.4

This will take some time. After BitKeeper is finished importing all of the files, I
recommend tagging this point with the kernel version number. This will allow
you to find the different kernel versions more easily in the future:

$ cd linux-2.4
$ bk tag LINUX_2.4.18

Now make a clone of that repository, which is a clean kernel tree, in a different
directory so you can make your own changes:

$ bk clone linux-2.4 greg-2.4

All of our kernel work will be done in the greg-2.4 directory.

You can use the -l option to bk clone. That will use a lot less disk space and go
faster by creating hard links to the metadata files. If a file is modified, BitKeeper

will break the link and create a new one where needed. If you end up creating a
lot of different repositories on the same disk, you should use this option.

After we are finished with our work, creating changesets by checking in our
changes all during the development process (see the BitKeeper tutorial for
more details of this), we would like to create a patch to show our changes. This
can be done with a simple command from within the greg-2.4 directory:

$ bk export -tpatch -rLINUX_2.4.18..+ -h \
> ../my_patch

This will create a patch showing all of the changes from the tagged version
(LINUX_2.4.18) up to the current changeset and save it in the my_patch file. This
patch can then be sent to other people through e-mail, just like any patch
created with diff. You will notice that creating this patch was a much shorter
process than the previous method of using diff and patch.

Submitting Kernel Patches

New Kernel Versions

When a new kernel version is released, you will want to forward port your
changes to the new version. This is where BitKeeper really shines over the
previous patch and diff method.

First, go to the original, clean kernel tree and import the new patch:

$ ls
greg-2.4 linux-2.4 patch-2.4.19
$ cd linux-2.4
$ bk import -tpatch -SLINUX_2.4.19 ../patch-2.4.19 .

If BitKeeper thinks any files that the patch file shows as created and deleted
might actually be files that were renamed or moved around the tree, it will pop
up a GUI tool that you can use to show manually which files were renamed,
which files simply were deleted and which ones simply were created. Figure 1
shows an example of this dialog box.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6183s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/6183f1.large.jpg

Figure 1. BitKeeper Example Dialog Box

Now go back to your working repository and pull the new changes into it:

$ cd ../greg-2.4
$ bk pull

BitKeeper will then merge all of the changes between kernels 2.4.18 and 2.4.19
into your working repository. If there are any merge conflicts between any
changes you have made and changes that have showed up in the new kernel
version, it will report this and ask you what you want to do. I suggest using the
graphical three-way merge tool to help resolve these conflicts. This tool shows
the original file with the changes that you have made and the changes that the
patch (or someone else) has made. It then lets you pick which change you want
to accept, or you can hand-edit the file, merging both changes together. Figure
2 shows an example of a change that I made to a file that conflicts with a
change that happened in the main kernel.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6183f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6183f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6183f2.large.jpg

Figure 2. A Merge Conflict

After you are finished resolving any conflicts (and wasn't that much easier than
manually looking through .rej files?), you can continue working in your updated
kernel. Again, to export a patch with all of the changes you have created, use
the following command within the greg-2.4 directory:

$ bk export -tpatch -rLINUX_2.4.19..+ -h \
> ../my_patch

Other Benefits of BitKeeper

BitKeeper also allows you to see easily all of the changes that have happened to
a specific file over time. You can see if the file was modified by one of the main
kernel patches or by yourself. An example of the changes that have happened
to the drivers/usb/serial/usbserial.c file over time in my repository can be seen
in Figure 3. With this tool, you can see what other changes happened at the
same time and even what line of code was modified in which version.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6183f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6183f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6183f3.large.jpg

Figure 3. BitKeeper Keeping Track of Changes

One of the strongest benefits of using BitKeeper for your kernel development is
that it is a very powerful version control system, and it allows you to work with
other developers on the same sections of code at the same time. You can allow
other people to pull from your working tree, or you can set up a local server to
store your working tree. See the BitKeeper tutorial and documentation for
some good examples of how this can be set up and how the development life
cycle can be used.

Conclusion

I have shown two different ways of doing Linux kernel development, one with
only patch and diff and one using BitKeeper. Personally, BitKeeper has enabled
me to spend more time actually doing development work and less time
messing with merges. It has also kept me sane in trying to track the 2.2, 2.4 and
2.5 kernel trees for the Linux USB and Linux Hot Plug PCI drivers.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6183f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6183f3.large.jpg

Resources

Greg Kroah-Hartman is currently the Linux USB and PCI Hot Plug kernel
maintainer. He works for IBM, doing various Linux kernel-related things and
can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6183s3.html
mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Introducing AOLserver

Reuven M. Lerner

Issue #101, September 2002

Using AOLserver is not nearly as difficult or challenging as you initially might
expect.

Apache, the well-known HTTP server, is something of a poster child for open-
source software: it is popular, stable, flexible, secure, portable, extensible and
compliant with internet standards. I've been using Apache since it was first
released, and it's a joy to work with.

But given that there are multiple open-source operating systems, editors,
databases and programming languages, it shouldn't come as a surprise to hear
that Apache isn't the only open-source HTTP server. What is surprising is that
one of the alternatives comes from America Online, the same company that
sponsors Mozilla, the open-source web browser.

AOLserver offers many of the same features as Apache: it is released under an
open-source license, is easy and flexible to configure and offers an API for
writing plugin modules. But AOLserver has a fundamentally different
architecture from Apache, which often makes it a more efficient choice.
Moreover, AOLserver includes a built-in Tcl interpreter, multiple threads,
database API and database connection pooling. If your web site uses a lot of
database connections, then it's worth looking into AOLserver as an alternative
to Apache.

This month, we look at AOLserver as a lead-in to several articles about the
open-source OpenACS (Open Architecture Community System) web application
framework. While AOLserver is not an absolute requirement for OpenACS, it is
the standard and expected way to configure and install the system.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

History

AOLserver began as NaviServer, written and sold by a pioneering company
called NaviSoft that offered high-quality, client- and server-side tools for web
publishers. AOL has often bought companies that have developed interesting
technology; in the case of NaviSoft, AOL bought them for their server- rather
than for their client-side tools.

AOLserver probably would have remained relatively unknown were it not for a
combination of events: AOL made binary copies of the program available at no
cost via the Internet, and Philip Greenspun began work on the ArsDigita
Community System. AOLserver makes it easy to create high-performance,
database-backed web sites; the fact that ACS made heavy use of relational
databases meant that AOLserver was a perfect fit.

But while AOLserver was free of charge, the source code still was unavailable to
the general public. In 1999, Greenspun helped negotiate a deal that resulted in
the release of AOLserver 3.0 under the AOLserver Public License, which is
essentially identical to the Mozilla Public License.

ArsDigita itself effectively went out of business earlier this year, with its
remaining staff and assets becoming part of Red Hat Software. But the original
ACS software lives on in the OpenACS Project, which is based on the original Tcl
version of ACS, using AOLserver and either PostgreSQL or Oracle.

AOLserver's transition to an open-source model wasn't without its problems.
While the details are still a bit sketchy, a number of OpenACS developers briefly
worked on their own fork of AOLserver, which they called OpenNSD, arguing
that the AOLserver developers needed to be more open to community
involvement. OpenNSD now appears to be dead, with the OpenACS community
once again encouraging people to use AOLserver.

At the same time, ArsDigita added a number of enhancements to AOLserver
that have not yet been added to the server's source code in its latest stable or
development editions. Because my use of AOLserver is almost always
connected to OpenACS, I will be using AOLserver 3.3ad13, available at
www.openacs.org/software.adp. More advanced versions, including a
development snapshot for the upcoming 4.0 version, are available at
www.aolserver.com. But right now, these official versions are not guaranteed to
support OpenACS.

What Makes It So Great?

Until earlier this year, when version 2.0 was first released to the general public,
Apache was a multiprocess server. That is, a number of Apache processes

http://www.openacs.org/software.adp
http://www.aolserver.com

would run at any given time, with each process able to handle a single HTTP
transaction at a given time. Supporting ten simultaneous transactions meant
having ten Apache processes running in parallel, while supporting 100
simultaneous connections meant having 100 such connections available.

Apache 2.0 changes this somewhat, allowing you to have multiple threads per
process. Each thread can handle an HTTP connection, meaning that five
threads in each of five processes can accept up to 25 simultaneous
connections. Because threads typically consume fewer resources than
processes, this effectively means that a typical PC will benefit from an increase
in performance.

AOLserver, by contrast, has always been multithreaded and operates within a
single process. At any given time, your computer will be running only one copy
of nsd, whose name reflects the fact that it was once the NaviServer dæmon.
But that one process can handle a large number of simultaneous HTTP
connections. Indeed, AOL continues to push AOLserver development precisely
because it can handle such a large number of simultaneous connections. It
uses AOLserver on its own high-traffic web sites, including netscape.com,
aol.com and digitalcity.com.

One advantage—and potential pitfall—of a multithreaded solution is the fact
that the threads easily can share data structures with one another. AOLserver
takes advantage of this to create a pool of database connections. Because
connections in this pool are always kept open, your web applications will not
have to spend time opening (or closing) them. Moreover, because it is rare for
all of a server's current HTTP connections to require simultaneous access to a
database, the pool can contain fewer connections than the maximum number
of threads—reducing the amount of memory used by the web server and the
database server. You can think of this as the database equivalent of packet
switching, in which a telephone line is shared among numerous parties by
taking advantage of the fact that no one needs the line 100% of the time.

AOLserver supports plugin modules, much as Apache does. There are a
number of modules available, ranging from an XML parser (nsxml) to an
embedded version of Python (PyWx). There are also modules for executing CGI
programs, for secure connections via SSL and for individual relational
databases such as MySQL, PostgreSQL and Oracle. Because OpenACS can work
with either PostgreSQL or Oracle, the version of AOLserver available for
download from openacs.org includes both of these modules, as well as nsxml.

Just as mod_perl allows web developers to customize Apache's configuration
and responses without using C, AOLserver provides an integrated API that
allows you to create custom functionality in the Tcl language. Truth be told, I

http://netscape.com
http://aol.com
http://digitalcity.com
http://openacs.org

personally would prefer to use Perl or Python for development, but as many
AOLserver and OpenACS developers have told me over the years, Tcl “isn't that
bad”, and I have managed to create a number of interesting, maintainable
applications using Tcl and AOLserver in a remarkably short period of time. (I
haven't yet tried the embedded Python module, in part because OpenACS
requires the use of Tcl.) And, the API that AOLserver provides makes it relatively
easy to work with such things as HTTP headers and HTML form values.

Compiling and Configuring

Compiling AOLserver is relatively straightforward. Unlike Apache, which
provides support via the apxs program for compiling modules after you have
installed the server, AOLserver requires that all modules be compiled and
installed together.

While creating this user and group is not mandatory, AOLserver will refuse to
run as root for security reasons. So before you begin to compile and install
AOLserver, you should create a new user and group on your system,
traditionally called nsadmin. On my Red Hat 7.2 system, I simply say:

/usr/sbin/adduser nsadmin

While still logged in as root, I now create the /usr/local/aolserver directory, into
which AOLserver is installed by default. I then give ownership of this directory
to nsadmin:

mkdir /usr/local/aolserver
chown nsadmin.nsadmin /usr/local/aolserver

Once we've done this, I change to the nsadmin user, open the source code that
I downloaded from openacs.org and begin the compilation process:

su - nsadmin
cd /tmp
tar -zxvf aolserver3.3ad13-oacs1-beta-src.tar.gz
cd aolserver
./conf

This will automatically configure, compile and install AOLserver according to
your system's parameters, placing files under the directory /usr/local/aolserver.
AOLserver automatically will try to compile whichever modules it can, ignoring
(and excluding) any others. On my desktop machine, which has development
libraries for PostgreSQL but not for Oracle, configuring and installing AOLserver
in this way results in the inclusion of the PostgreSQL driver, but ignores the
Oracle driver entirely.

The build process can take awhile and doesn't produce a great deal of output
to the screen. If you are concerned that the process has somehow become

http://openacs.org

frozen, you can look at the log/aolserver.log file; all of the compilation output
can be found there.

When the build process is done, you will have a copy of AOLserver in /usr/local/
aolserver. The most important directories under /usr/local/aolserver are bin, in
which the AOLserver (nsd) program is located, along with the shared libraries
(.so) for each of the modules that were compiled into the server. The log
directory contains access and error logs for the server, and the lib directory
contains the built-in Tcl interpreter.

AOLserver's configuration file is written in Tcl; a simple configuration file is
placed by default in /usr/local/aolserver/sample-config.tcl. If you examine it,
you will see that each of the configuration directives is actually a Tcl variable
assignment. These variable assignments are divided into sections, where each
section normally represents a module that was compiled into the server.

As you can see from the sample configuration file, you can assign literal values
to variables. For example, you can set the HTTP port to which AOLserver listens
to 8000 with the following:

set httpport 8000

Because the configuration file is written in Tcl, you also can set the homedir
variable, which is /usr/local/aolserver by default, by asking AOLserver rather
than hard-coding the value:

set homedir [file dirname [ns_info config]]

And of course, you can base variable settings on the values of other variables,
using simple interpolation:

set servername "server1"
set pageroot ${homedir}/servers/${servername}/pages

Those two lines, from the sample configuration file that comes with AOLserver,
configure the root of static URLs to be in /usr/local/aolserver/servers/server1/
pages.

Other configuration settings are made with the ns_param command, which
typically takes two parameters: a name and a value. Each parameter must
come in a section, begun by a call to ns_section. For example, we can activate
server debugging by turning on the debug parameter in the (global) ns/
parameters section:

ns_section "ns/parameters"
ns_param debug false

Unfortunately, the documentation for AOLserver's parameters is quite lacking
when compared with the on-line Apache documentation. An almost complete
list of parameters is at aolserver.com/docs/admin/config-reference.tcl.txt,
which demonstrates a server configuration that sets nearly everything.

Once you have finished configuring your system—and the default configuration
is a good start for simple sites—you can start AOLserver by invoking the nsd
program and specifying the name of the configuration file you want to use:

cd /usr/local/aolserver
bin/nsd -f -t sample-config.tcl

The -f option runs AOLserver in the foreground, sending the error log to your
screen. Once you feel comfortable with what's happening, you can remove the -
f, looking in the log directory for your server's error log.

If you want AOLserver to listen to port 80, then you must start it as root.
Otherwise, Linux will refuse to honor the request, telling you that only the
superuser can start servers that listen to “privileged” ports (i.e., less than 1024).
If only root can listen to port 80, but AOLserver refuses to run as root, how can
you serve port 80? By starting AOLserver as root and passing it options to
indicate the user and group to which it should switch:

su root
cd /usr/local/aolserver
bin/nsd -f -u nsadmin -g nsadmin -t \
 sample-config.tcl

You should now be able to point your browser at http://
yourhost.yourdomain.com:8000/ and see the introductory AOLserver
document, welcoming you to this new server. Note that AOLserver's
configuration file looks for both your computer's name and its IP address, so if
you are connected to a network, you will not be able to point your browser to
localhost, but will instead need to use its full name.

Tcl Programs

While AOLserver is undoubtedly an excellent HTTP server for static documents,
you're unlikely to use it for that. It's far more common to create dynamic pages
using Tcl.

The easiest and simplest way is to create a Tcl program that returns HTML. To
do this, create a file in the pageroot that ends in the .tcl extension. It can create
any Tcl that you want; the most important thing, however, is that it end with
ns_return—a Tcl procedure defined by AOLserver that takes three arguments:
1) a numeric HTTP response code (such as 200 or 404) that indicates the
success or failure of the program's execution, 2) a “Content-type” header that

http://aolserver.com/docs/admin/config-reference.tcl.txt

describes the type of content that is being returned and 3) the actual content to
return to the user.

For example, here is a simple “Hello, world” program:

ns_return 200 text/html "<html>
<head>
 <title>Testing</title>
</head>
<body>
 <p>Hello, world</p>
</body>
</html>"

If you stick the above program in the pageroot directory as hello.tcl and load it
into your browser, you will get the literal contents of the file returned to you.
That's because we need to reconfigure AOLserver to allow .tcl pages within the
pageroot. We do this by setting the enabletclpages parameter to true within the
ns/server/${servername} section:

ns_section "ns/server/${servername}"
ns_param enabletclpages true

Once you have made this change, you can restart AOLserver and retrieve
hello.tcl once again. This time, you should see HTML output rather than the
verbatim, text/plain output.

A .tcl page can do a host of different things: connecting to a database, retrieving
information from XML files to retrieving information from across networks or
receiving information from an HTML form. Because Tcl comes with a variety of
string-manipulation commands, you can parse the input and interpolate
variables into the output in a wide variety of ways.

Note that the Tcl is interpreted within AOLserver, rather than as an external
process. This means that such .tcl files execute much faster than a CGI program
would; in many ways, they run similarly to Perl programs in mod_perl.

It's true that .tcl files are great when a programmer is creating the outgoing
HTML. But as I (and others) have learned from bitter experience, graphic
designers generally are unprepared to modify HTML that appears within source
code files. For this reason, many web developers have switched over to
templates—be they ASP, JSP, HTML::Mason, DTML or a variety of other similar
technologies. AOLserver comes with its own built-in templating system, known
as ADP (AOLserver Dynamic Pages), whose syntax is suspiciously similar to
Microsoft's ASP. Code that you want to execute goes within <% and %>, while
the code that outputs a value into the surrounding HTML goes within <%= and
%>. For example:

<% set foobar "abcdef" %>
<head>
 <title>Testing</title>
</head>
<body>
 <p>Hello, world</p>
 <p>Hello, <%= $foobar %></p>
</body>
</html>

Sites larger than a few pages probably will want to share some Tcl code. The
easiest way to do this is to create one or more .tcl files that define procedures
that AOLserver will load at startup time. These procedures then will be available
to all of your .tcl and .adp pages. To enable this functionality, we must add the
following to our sample-config.tcl file:

ns_section ns/server/${servername}/tcl
ns_param library \
 ${homedir}/servers/${servername}/tcl
ns_param autoclose on
ns_param debug true

Since our server name is server1, any .tcl file that we place in /usr/local/
aolserver/servers/server1/tcl will be loaded when AOLserver starts up. For
example, I added the file foo.tcl to that directory, whose contents consisted of:

proc return_hello {} {
 return "hello"
}

I restarted AOLserver (which is necessary in order for it to read Tcl library files)
and modified hello.adp to read:

<% set foobar "abcdef" %>
<% set hello [return_hello] %>
<head>
 <title>Testing</title>
</head>
<body>
 <p>Hello, world</p>
 <p>Hello, <%= $foobar %></p>
 <p>Hello, <%= $hello %></p>
</body>
</html>

Now the value of the “hello” variable is set to the output from my return_hello
proc, which in this case is nothing more than the word hello.

Because you must restart AOLserver in order for it to load library Tcl
procedures, I've often found it easiest to define new procedures within <% %>
sections in my ADP pages. Once I see that the procedure works correctly, I
move its definition to the library directory and restart AOLserver only once.

ADP and .tcl pages are fine for documents that contain some dynamic content.
But sometimes you want to associate programs with a URL without necessarily
creating a document on disk. We easily can take care of this by defining a Tcl
procedure in our library file and then registering that procedure with a
particular URL using the AOLserver ns_register_proc command:

proc http_hello {} {
 ns_return 200 text/html "<html>
 <head><title>Hello!
 </title></head>
 <body><p>Hello!
 </p></body>
 </html>"
}
ns_register_proc GET /hello http_hello

If you put this Tcl code in a file that sits within the library directory we defined
earlier, restart your server and point your browser to /hello, you will see the
output from our http_hello procedure.

I've been programming in mod_perl for several years and am still impressed by
the ease with which you can create new dynamic pages with AOLserver and
ns_register_proc. Moreover, you can register different procedures for GET and
POST requests. You even can register filter procedures that can monitor or
change the output generated by another page.

Conclusion

If you plan to use OpenACS for on-line communities, then you almost certainly
will have to learn how to work with AOLserver. But even if OpenACS does not
interest you, AOLserver's flexibility, speed and multithread capabilities are well
worth investigating for your dynamic web sites.

Resources

email: reuven@lerner.co.il

Reuven M. Lerner is a consultant specializing in web/database applications and
open-source software. His book, Core Perl, was published in January 2002 by
Prentice Hall. Reuven lives in Modi'in, Israel, with his wife and daughter.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6164s1.html
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Ultimate (but Small) Linux Box!

Marcel Gagné

Issue #101, September 2002

You don't always need the biggest, baddest machine to get the job done well—
slim down the numbers.

Great meals are made in great kitchens, François, but what makes a kitchen
great is simple. A great kitchen is a marriage of talent and environment, the
chef and his or her tools. To do wonderful things, one doesn't need the world's
largest kitchen any more than one needs the biggest and fastest computer
when cooking with Linux. Observe, mon ami, this window manager, IceWM.
While it is a small package, it is still quite attractive, flexible and easy to work
with.

François, you are not paying attention. Quoi? Ah, welcome, mes amis, to Chez
Marcel, home of fine Linux cooking. Please, let me show you to your seats while
François fetches the wine. Vite, François. Slip down into the north wing of the
wine cellar and bring back that 1999 Napa Valley Cabernet Sauvignon we were,
uhm, submitting to quality control earlier today.

While we wait for the wine to arrive, let me tantalize you with some hints from
today's menu. It is easy to get carried away with the idea of a super fast
processor (or several), vast amounts of disk space and virtually endless
memory. Unfortunately, that is not the machine we are all blessed with. In fact,
those who might remember the days of being a poor student certainly will
appreciate that, sometimes, we take what we can get. How, then, does
someone with only modest hardware take advantage of the power of Linux?

For starters, we could run a very small system by going to some Linux
distributions on a single floppy and ignoring the graphical environment entirely,
but I would like to avoid doing that. The idea is to create an attractive desktop
with some friendly graphical tools while living within the constraints of limited
resources.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Here are some interesting numbers: on my new Red Hat 7.3 workstation,
running the KDE 3.0 desktop with a single xterm, the free command shows
roughly 34,000KB (not counting buffers and cache) of memory in use. This is
after I subtract the base system requirements and without running a login
manager, such as KDM. Granted, a lot of KDE's funky new features are running,
such as fading tool tips, pop-up icons, sound themes and so on, but that is the
default install. GNOME 1.4, again with a single xterm, comes in closer to
27,000KB. Those KDE and GNOME numbers present a sharp contrast to what I
get when I run this IceWM—a mere 7,500KB.

As you can see, you can make a huge difference right from the start even when
continuing to run a graphical environment. IceWM, written by Marco Macek and
enhanced by Mathias Hasselmann, is a small, lightweight window manager that
is nonetheless feature-rich. It supports multiple desktops or workspaces, can
be used without a mouse, supports (and comes with several) themes and does
a nice job of mimicking the style of that other OS.

The latest incarnation of IceWM can be found at www.icewm.org. The site
provides precompiled RPMs, but building this little window manager is easy and
follows the classic extract and build five-step method:

tar -xzvf icewm-1.0.9-2.tar.gz
cd icewm-1.0.9-2
./configure
make
su -c make install

You no doubt will want to customize IceWM to your own environment and add
those little touches that make you feel at home. The best way to do that is to
create a local .icewm directory (in your home directory), then copy the system-
wide configuration files there. The default installation puts them in /usr/X11R6/
lib/X11/icewm.

mkdir $HOME/.icewm
cp -r /usr/X11R6/lib/X11/icewm/* $HOME/.icewm

Et voilà! You are ready to run your new window manager. The easiest way to
get started is to create an .xinitrc file in your home directory. All you really need
in that file is a single line that reads:

exec icewm

Now, type startx, and you are skating on the Ice window manager (a little joke,
mes amis). Click the application launcher button in the lower left-hand corner,
start a few programs, and you should have something that looks like Figure 1.

http://www.icewm.org

Figure 1. IceWM, a Very Cool Window Manager

After doing some rather casual mathematics, my running instance of IceWM
(with nothing but an xterm) comes in at around 7,500KB. Not bad, but where
else can we do a little trimming? How about the graphical web browser? It
seems lately that web browsers keep getting bigger and bigger. Granted this is
because of their increasing richness of features, but on less than super fast
hardware, we might be willing to give up a feature or two. Even Opera, an
excellent browser that has gotten a lot of press lately (in part thanks to its
speed and small footprint), still might be a bit hefty.

Consider Jorge Arellano Cid's Dillo browser as an alternative to the larger,
flashier, do-it-all browsers of the day. You'll not only find that its demands on
your system are few, but its speedy rendering of pages is also nice. Have a look
at Figure 2 for a rather snappy shot of Dillo in action.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6169f2.large.jpg

Figure 2. Dillo, a Small and Fast Graphical Web Browser

To get started with Dillo, visit dillo.cipsga.org.br and pick up the latest source.
Extracting and building it involves a familiar set of steps:

tar -xzvf dillo-0.6.6.tar.gz
cd dillo-0.6.6
./configure
make
su -c make install

Once the program is built and installed, you start it by typing dillo &. After
starting Dillo, I checked my resources yet again and found that the whole
running process took only 848KB of RAM, a rather impressive little number.

Arguably, the word processor is the single most important desktop application
in the office. What could we possibly do in terms of a full-featured, powerful
word processor that handles the ubiquitous MS Word format documents?
Keeping something like this small is a tall order, I agree, but how does the
1,700KB of AbiWord sound? Compare that with the nearly 12,000KB my system
reports upon firing up OpenOffice Writer. If all you need is a word processor,
and your resources are limited, visit www.abisource.com, where you can get
yourself a free copy of this great word processor.

A number of prebuilt binaries are available on the site, so you probably don't
have to do much work. For those who prefer building from source, you'll have a
couple of additional steps, but it is all very simple:

https://secure2.linuxjournal.com/ljarchive/LJ/101/6169f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6169f2.large.jpg
http://dillo.cipsga.org.br
http://www.abisource.com

tar -xzvf abiword-1.0.2.tar.gz
cd abiword-1.0.2/abi
./autogen.sh
./configure
make
su -c make install

When you have finished installing AbiWord, you can start it by typing the
command abiword &. A word of warning: a common complaint when starting
up AbiWord has to do with fonts. By default, AbiWord's fonts aren't included in
your X font server's list of available fonts. Consequently, AbiWord will complain
on starting up. The program should still run, but you won't have access to the
included fonts. To rectify this complaint, you can simply add your fonts to your
X font server's font path. On a Red Hat or similar system, the easiest approach
is to use the chkfontpath command:

chkfontpath -a /usr/local/share/AbiSuite/fonts
service xfs restart

The path above assumes that you installed AbiWord from source. On other
systems, you may have to edit the /etc/X11/fs/config file and manually add the
font path. Look for the paragraph that begins with catalogue =:

catalogue = \
/usr/X11R6/lib/X11/fonts/75dpi:unscaled,

Notice that each line has a comma at the end of it except for the last. If you are
manually adding the font path to the end of this list, make sure you add a
comma to the now second-to-last line and remove the comma from the last.
Once again, restart the xfs service and then restart your window manager
session.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6169f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6169f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6169f3.large.jpg

Figure 3. Working with AbiWord

So, we have a tiny but slick window manager, a tiny but slick web browser and a
modest but powerful word processor. What about an entire office suite? Once
again, I can see from the look in your eyes that you think Chef Marcel has been
sampling a little too much of his own wine.

Have a look at Siag Office, whose name stands for “Scheme in a grid”. Not a
very intuitive name for an office suite, I grant you, but Siag is an office suite you
owe to yourself to have a look at. It is a tightly integrated suite comprised of a
word processor (which the author calls Pathetic Writer), a spreadsheet (Scheme
in a grid), an animation program (Egon) and more. Right up front, I will tell you
that MS Word format is not directly supported. For some, this may be a
showstopper, but for others it is less of a problem. Because RTF format can be
used to exchange documents, this may be all you need to move documents
back and forth.

You'll need to get and compile the XawM libraries (an Athena-compatible
library), the Mowitz libraries (more widgets) and finally, Siag Office itself. Trust
me, it's easier than it sounds; all of these packages are available on the main
site. Each package can be compiled with the classic extract-build five-step
method. For instance, with the XawM libraries, you would do this:

tar -xzvf XawM-1.5u.tar.gz
cd XawM-1.5u
./configure
make
su -c make install

Once you have made and installed all three packages, you should be able to
start the word processor by typing the command pw and the spreadsheet with
siag.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6169f4.large.jpg

Figure 4. All This for So Little

We've done this little number comparison a few times now, so let's have a look
at how much Pathetic Writer demands of my system. Drumroll please. With
Pathetic Writer going and a column-length article loaded, I am using a mere
1,300KB.

In fact, with IceWM, AbiWord, Pathetic Writer, the Siag spreadsheet, the Dillo
web browser running and an xterm, my memory usage is still under 32MB!
Have a look at Figure 4 for a screenshot of my lightweight but busy session.

But, of course, when working with limited resources, applications are only part
of the picture. A default installation of any major distribution likely will have a
number of unneeded services running. You must ask yourself whether you
need to be running things like sendmail, NFS, the Apache server and so on
when your PC is being used as a workstation. Run a ps axfw and decide
whether you need all those services.

As you can see, you don't need to have the biggest, fastest and most up-to-date
computer to experience the ultimate Linux system. What you need is the
willingness to look beyond the most popular packages of the day and ask
yourself whether you really need all those features. Sometimes smaller is
better. When it comes to wine, however, a nice generous glass doesn't hurt.
That large glass can, however, affect your performance (consequently taxis will
be waiting outside the restaurant). Drink up. Enjoy. Until next month. A votre
santé! Bon appétit!

https://secure2.linuxjournal.com/ljarchive/LJ/101/6169f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/101/6169f4.large.jpg

Resources

Marcel Gagné lives in Mississauga, Ontario. He is the author of Linux System
Administration: A User's Guide (ISBN 0-201-71934-7), published by Addison-
Wesley (and is currently at work on his next book). He can be reached via e-mail
at mggagne@salmar.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/101/6169s1.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Q&A with Chris Wysopal (Weld Pond)

Mick Bauer

Issue #101, September 2002

Chris discusses the problem of application security and the importance of
designing products securely from the start.

One of the most interesting, accomplished and productive hacking
organizations of the mid- to late-1990s was L0pht Heavy Industries, a loose
affiliation of “gray-hat” (i.e., mostly benevolent) hackers. During those years, the
L0pht earned worldwide notoriety plus the ire of Microsoft for discovering and
publicizing a number of software vulnerabilities, especially in Windows.
Combined with the success of their password-auditing tool, L0phtCrack (which,
besides exposing poorly chosen passwords also demonstrated inherent
weaknesses in early Windows NT authentication implementations), the L0pht's
relentless exposure of poor security programming played a significant role in
Microsoft's slow but pronounced improvement in addressing security flaws in
their products.

The L0pht's fame and popularity culminated in eight of their core members
being invited to offer expert testimony on internet security to the US Senate in
1998. One of those members was Chris Wysopal, aka Weld Pond, a veteran

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

computer security engineer, researcher and programmer. Chris, along with
many of his former L0pht colleagues, now works for the consulting firm @stake,
with whom L0pht Heavy Industries merged in January 2000.

Chris graciously interrupted his busy schedule as @stake's director of research
and development to submit to a Paranoid Penguin interrogation. True to the
L0pht's old form, his answers were frank, extremely well informed and
thoughtful.

Mick Many of our readers are familiar with your work with the L0pht, but you've
been in the public eye a bit less lately. Could you describe your current job at
@stake and how it's different from what you were doing before?

Chris I am the director of research and development at @stake. From a
management standpoint, I oversee the different research and tools projects
that the consultants and developers are undertaking. Areas of research are
forensics, attack simulation, wireless and applications. Personally, I have been
most involved in the area of application security.

There are actually similarities with the L0pht. Each person has their own area of
expertise and is given the opportunity to work on technology that interests
them, whether it be tools development or vulnerability research. The difference
with @stake is all the research and tools we build have a business need. Most
are born out of problems we see working with our customers or grow out of
the need to automate security tests we do manually as part of our consulting
practice.

Mick What are some of the technologies you've worked with lately?

Chris Recently, I've been working on the problem of application security. How
do you design products securely from the start? How do you implement them
using secure coding techniques? How do you test that they are secure? This is a
difficult problem to solve because you have to fit it into the way software is
built in the real world: with a limited budget and extreme time pressure.

The solution we've come up with is to build security into the different stages of
the development process. We have come up with techniques for diagramming
the threat paths of an application to use during the design process. This allows
us to find design flaws efficiently and, at the same time, make sure we have the
whole design covered to a certain depth. The next step is building tools to do
this.

For the implementation process, we've built tools that model an application's
behavior by analyzing the source code or even the binary. This is semantic

analysis and not the simple lexical analysis we did previously with SLINT [a
code-auditing tool developed by the L0pht]. It allows automated detection of
bad code that will cause buffer overflows or script injection, for example.
Dildog, also from the L0pht, and Tim Newsham deserve the credit for this tour
de force tool.

To enable automated security testing we're working on application penetration
test tools that can fuzz (send random problematic data) arbitrary application
protocols such as HTTP. We can set up an application in a lab environment and
launch automated attacks. These tools are great for finding buffer overflows,
format string, canonicalization and script injection problems. Other tools are
shims and proxies to manipulate an application as it reads and writes data over
the wire, a system call or an RPC call. I hope these types of tools become part of
the standard quality-assurance process that people follow before releasing
software.

Mick Indeed. Speaking of software, do you still find much time for coding?
Anything in the works you care to discuss?

Chris I haven't found time to do any substantial coding lately. Mostly I'm
creating proof-of-concept code or scripts to try out a particular application
attack. If I had to mention one cool thing to look out for, it is definitely our
source and binary semantic security analysis tool. This is going to bring a
revolution in the ability to detect security problems before (and after) a piece of
software is released.

Mick Do you see any improvement in the software industry at large in making
security a design goal of programming projects rather than an afterthought?

Chris Yes, definitely. The secure software development techniques and tools we
have been working on have been well received by our software customers. A lot
of this is due to being beaten up about insecure products over the last few
(many?) years. Sophisticated technology customers simply are not accepting it
anymore. It is becoming part of the purchasing decision.

Another reason things are changing is companies are learning that it's very
expensive to patch vulnerabilities after the fact, not to mention the PR
nightmare. They are finally realizing that there are people out there actually
downloading the trial versions, breaking them in their labs and publishing what
they find. [Software companies] just can't hide their shoddy security anymore.
Plus, it is cheaper to build in security upfront. We've built a “return on security
investment” model using the vulnerabilities and the cost to fix them from the
data of 45 customer engagements. The numbers crunch down to a 21% savings

by starting out building a secure application rather than trying to bolt security
on after shipping.

Mick The Open Source world has had its share of security crises in the past few
months, with a string of vulnerabilities in Secure Shell, Squid, SNMP and zlib, to
name a few. Yet some of these affected packages, particularly OpenSSH, are
maintained by the OSS community's best and brightest. Is this trend simply bad
luck? Is software becoming unsecurably complex, or do you see some other
explanation?

Chris Yes, some of it is very complex. SSH took a big leap in complexity going up
to version 2.0. I think the code auditing that has gone on has eliminated much
of the low-hanging fruit vulnerabilities from important applications. The closed-
source vendors are playing catch-up here. But I don't think this eliminates
nearly all the problems.

There needs to be an effort to do more than code auditing. There is a need for
threat modeling of the designs and application penetration testing such as
fuzzing. Some problems, like the ASN.1 problems that plagued SNMP, are
difficult to find through auditing. The data paths are becoming very complex. I
also think vulnerability researchers are getting better, and there are more
people doing it.

Mick Your @stake compadre, Dr. Mudge, has been speaking lately about risk
management and other less-technical approaches to IS security. What sort of
progress do you see companies and organizations making toward demystifying
IS security in this way and institutionalizing good security policies and practices?

Chris The business managers in a company need to understand the risks of not
having adequate security. This understanding should not reside in IS alone.
Once security-incident costs are quantified for the people in charge of profit
and loss, they start to see the value of security and are willing to pay for it. Then
people running the business will have a much larger budget to allocate toward
security products and services. Once executives in a company are educated to
the risks, there is a much better chance that security practices and policies will
be adopted company-wide.

Mick What are some approaches that seem to work in getting organizations to
adopt better security policies and practices, especially in selling these concepts
to nontechnical managers?

Chris Demonstrations work wonders. It's one thing to tell a nontechnical
manager that his upstream internet connection can be sniffed and that his
company is sending sensitive information in the clear. It's another to show him

the finance department's latest salary updates that they just sent via e-mail to
an out-sourced payroll company. It hits home when you get the data.
Nontechnical people have a problem understanding what could be done with a
vulnerability. It's too hypothetical.

Mick That's certainly my experience too. By the way, it occurs to me that your
@stake colleague Frank Heidt will be performing exactly that kind of
demonstration on the Linux Lunacy Cruise this October (not that I'm shilling
this fine Linux Journal-sponsored event or anything). Here's a question that is of
the utmost importance to our readers: what is your own experience with Linux?

Chris Heh, I am an old-timer. I set up the first Linux box we had at the L0pht in
1994. I think it was the 0.99.pl14 kernel running on a 486. I configured it to be
our internet gateway, routing our class C over a 28.8. I was running NCSA web
server and sendmail. For a trip down memory lane, check out the L0pht web
site as it was running on that box: web.archive.org/web/19961109005607/
http://l0pht.com.

We used DESLogin because these were the pre-SSH days. Linux was my first
experience with UNIX programming. I had access to a SunOS 2.4 system, but it
didn't have the development tools that Linux did. Linux excelled as a learning
environment then, as it does now.

Mick What do you see as being some of Linux's strengths and weaknesses from
a security standpoint?

Chris Linux has a simpler security model and configuration than many other
OSes, although things have been growing in complexity over time. If you aren't
doing anything too complex, this simplicity is a big plus. Most of the complexity
of other systems ends up shooting programmers and administrators in the
foot. Fewer things that need to be run as root, the ability to run almost nothing
SUID root, and text configuration files make it easy to lock down a system.
Linux has been very virus-free, even when tasked with everyday dangerous
chores like mail reading and browsing. This is a testament to basic good
security design.

On the other hand, with Linux everyone is a programmer, and let's face it, not
everyone knows secure coding. I don't always want to have to audit code when
I install a package that is exposed to the Internet in some way. There are even
some packages out there where the author explicitly states that the program is
insecure and to not bother contacting him or her. This is unacceptable. The
strengths of Linux security can be undone by one poorly coded application. But
of course, that is true of closed-source systems too.

http://web.archive.org/web/19961109005607/http://l0pht.com
http://web.archive.org/web/19961109005607/http://l0pht.com

Mick Bauer (mick@visi.com) is a network security consultant for Upstream
Solutions, Inc., based in Minneapolis, Minnesota. He is the author of the
upcoming O'Reilly book Building Secure Servers With Linux, composer of the
“Network Engineering Polka” and a proud parent (of children).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:mick@visi.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Ultimate Machines

David A. Bandel

Issue #101, September 2002

What will the next generation think about our old servers and desktop
clunckers?

Years ago, in the days before the Web was popular, the ultimate machine was
equated universally with servers. These systems had the hottest, fastest CPU(s)
one could afford, obscene amounts of memory (often as much as 64MB of
RAM), huge, fast SCSI hard drives (usually two or three to spread the load) and
were never commodity (Intel) systems—they were DECs, SUN Sparcs, IBM RS or
HP UNIX servers. Back in those days, the big data centers belonged to Wang
and others. Today, most server systems I install are or can be low-end systems
with 1GHz processors, 128MB RAM, 18GB IDE hard drives that absolutely fly, at
least compared to the clunky MFM or RLL drives of years gone by, and they're
still overkill. Now, more than ever, you're likely to find the ultimate machine on
the boss' desktop. After all, we can't have him or her waiting ten seconds for
Outlook or Netscape to open, and how will he or she watch CNN while working
in the bloated, monstrous word processor (with 95% of the “features” totally
unknown to most users). Today's graphics cards have more RAM than the first
disk drives I owned had storage space. And computing is only in its infancy. In a
few years we'll look back on today and shake our heads, wondering how we
ever got along with such slow, primitive systems.

CheckInstall asic-linux.com.mx/~izto/checkinstall

I find it hard to believe I've overlooked reviewing this particular package
because I use it all the time. (All programs in this column are built from source.)
This program is run instead of make install when installing packages from
source. It builds (albeit crudely) RPMs, DEBs and TGZ (Slackware) packages. This
will help control the cruft on your system as you install and remove source
packages. I even use it on my Linux from Scratch systems (I install RPM and
checkinstall early on). This is a must-have/must-use for all systems—
production, test, whatever. Requires: bash, glibc.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://asic-linux.com.mx/~izto/checkinstall

CRM www.it-combine.com/crm

CRM allows you to track incidents (entities), assign them to folks for resolution,
assign due dates, priorities and so on, then check up on all the activity. If you're
running a service-oriented business, this particular application will be worth
investigating. You even can set alarms on projects you don't want to extend
past the due date. Easy to install and use. Requires: MySQL, Apache with PHP
and MySQL, web browser.

LGeneral lgames.sourceforge.net

Many years ago I used to sit around with some friends for weekends at a time
and play games like NATO Division Commander. I haven't done that in a long
time, but this game brought back memories. I don't have the time now to sit
around all weekend playing war games, and even if I did, my significant other
would likely object. But I can play LGames anytime, even on sleepless nights, as
long as I keep the volume down. Requires: libSDL_mixer, libSDL, libpthread,
glibc, libm, libdl, libvorbisfile, libvorbis, libogg, libsmpeg, libartsc, libX11, libXext.

Crossword Generator www.ldc.usb.ve/~96-28234/crossword-0.8.tar.gz
(download only)

If you like crossword puzzles, this program will provide you with all the puzzles
you could want. You create the board and provide a list of words, and the
program does the rest. What is needed is a tie-in to a thesaurus so the clue
provides synonyms or definitions rather than the word itself. Documentation is
provided in Spanish (as are dictionaries, etc.), but that's easily remedied.
Requires: libstdc++, libm, glibc, TeX, LaTeX.

Find++ ios.free.fr/?page=projet&quoi=15

If there's one thing users like, it's simple, easy-to-use tools. But above all, they
like graphical tools. The find++ utility will search your hard drive for words or
phrases contained either in the filename or inside the file. Once a document is
found, if the file type has been associated with a program, you can launch that
program and open the file. It doesn't get much easier than this. Requires: libgtk,
libgdk, libgmodule, libglib, libdl, libXext, libX11, libm, glibc.

dnstracer www.mavetju.org/unix/general.php

Need to find out where a particular domain name entry is coming from? This
will trace the authoritative information back to its source. The program has a
lot of options for controlling how the query is run. Requires: glibc.

http://www.it-combine.com/crm
http://lgames.sourceforge.net
http://www.ldc.usb.ve/~96-28234/crossword-0.8.tar.gz
http://ios.free.fr/?page=projet&quoi=15
http://www.mavetju.org/unix/general.php

ippl (Internet Protocol Logger) pltplp.net/ippl

This month's pick from three years ago wasn't easy, as a number of good
choices are still available, but ippl is probably the most useful. If you need to
keep an eye on the types of traffic you have, ippl will do that well. It's somewhat
improved since three years ago. Probably the best feature is that you can
configure it easily to log only those protocols in which you're interested. Its
drawback is a lack of support for other than the standard TCP, UDP, ICMP
protocols, but few folks would need this anyway. Requires: libthread, glibc.

Until next month.

David A. Bandel (david@pananix.com) is a Linux/UNIX consultant currently
living in the Republic of Panama. He is coauthor of Que Special Edition: Using
Caldera OpenLinux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://pltplp.net/ippl
mailto:david@pananix.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Grass Roots WiFi in London

Doc Searls

Issue #101, September 2002

Doc arrives in London to discover free, wireless net-access infrastructure being
built by hackers using Linux and other handy materials.

Linux for Suits

The People's Infrastructure: Grass Roots WiFi in London

I travel around the US so much that I usually make sure I have local net-access
numbers before I leave. Mostly this involves keeping an EarthLink account
because EarthLink has a lot of numbers and requires no special client software
to access them, but travel overseas is another matter. I've only gone twice in
the last two years, and both times I departed unprepared.

The first trip was in the fall of 2000 to Lucerne in Switzerland. None of the local-
access numbers for EarthLink worked, nor the numbers for my hosting ISP's
local Swiss “partner”. I gave up and called numbers in the states.

The second trip was last week (it's mid-June 2002 as I write this). Before I left,
EarthLink told me they were no longer (despite their name) offering overseas
access, and I didn't have time to hassle with joining AT&T's system, which
apparently has access numbers around the world but evidently exposes them
only through their Windows client dialing software. Just before I left, I quickly
engaged the services of two resellers of a “global roaming” provider called iPass
(ipass.com) and headed for Munich. It looked easy: a $5.00 setup charge, plus
somewhere between $.03 and $.23 per minute once I got on-line.

But I never could figure out how to get local numbers from either of the iPass
OEMs (one eventually wrote to apologize for never getting me on the system,
which could only be set up by phone call with a salesperson). However, it didn't
matter because something miraculous arrived before I did: wireless net access.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://ipass.com

Our hotel in Munich featured a wireless signal covering the lobby and meeting
rooms. They sold it in the form of a card with an ID and a password hidden
behind one of those scratch-off black patches they use on lottery tickets. You
can buy two hours for 9 Euros or 24 hours for 29 Euros. (Not cheap, but very
handy.) You simply fire up a browser, go to a URL specified on the card, enter
your ID and password, and you're on for as long as the meter runs.

The event was JabberConf (www.jabberconf.com), where the techies on staff
offered plenty of bandwidth as well—all of it free for anybody who wanted it.
Unfortunately, their WiFi base station had some kind of problem, so everybody
had to share an eight-port hub out in the hall. I wanted to be live on the Net in
the meeting rooms, so I paid the hotel for the privilege, and it worked very well.

But the mindblower came when I arrived in London. After failing once again at
dial-up from my hotel, I went down to the local internet café. There I paid a few
pounds to sit for a couple hours with my laptop jacked into the Net, looking for
local wireless access points. It took awhile, but I eventually hit pay dirt in the
form of Consume.net (consume.net), the FAQ of which modestly describes its
mission as “a collaborative strategy for the self provision of a broadband
telecommunications infrastructure”. And indeed, that's what it is.

The top link on the left column of the main index page is “Nodes”. Clicking here
brings up a map with little circles all over it, each bearing the name of an access
point. Some, like Hyde Park and Greenwich University, are relatively obvious
locations—if you're a local, which I'm not. Most are obscure: “twenteenth node”,
“dude”, “neotokyo”. But after I subtracted out all but the operational nodes
(marked green), I found that the nearest one, called Kynance Mews, was a short
walk up Gloucester Road from my hotel on Cromwell, in South Kensington.

When I clicked on “get node info”, a page with an abundance of useful
information appeared. In addition to the name of the node, it featured
coordinates by both latitude/longitude and the Ordnance Survey, links to
detailed street maps and aerial photographs and a list of every other node
within 4,000 meters, including distance (to the meter) and compass bearing (to
the degree). The description read, “Up and running—covering Kynance Mews
and Kynance Place. This includes two cafés with good coffee and outside
seating. Hurrah!”

So I walked straight up Gloucester, and sure enough, a signal presented itself as
soon as I passed the parallel entries to Kynance Mews and Kynance Place.
Down at the other end of the latter was a pretty little French café with outdoor
seating called Petite Délice. So I went down there, ordered a coffee and a
pastry, sat down, opened my laptop and found I was already on the Net. The
node identified as Kynance Community Wireless, assigned me a DHCP address

http://www.jabberconf.com
http://consume.net

and let me at the bandwidth. To further perfect the situation, the sky had
turned to puffy blue clouds, the air was warm, the flowers blooming, the birds
singing and South Kensington looked as postcard-perfect as you can imagine.

Two tables away another patron was sitting at a table talking about “access” to
a tall and familiar-looking young gentleman walking a very friendly greyhound. I
called over and said “Excuse me, is this your node I'm on?” “Yes”, he said, and
came over. A look of recognition crossed his face and he said, “You're Doc
Searls!” “Yes!” I replied. After uttering a delighted expletive, he held out his hand
and introduced himself as Ben Hammersley.

That would be the same Ben Hammersley who writes for the London Times, the
Guardian and O'Reilly Books, for which he's currently working on an
authoritative piece on RSS. He also writes four different weblogs and had
recently attended O'Reilly's Emerging Technologies Conference in Santa Clara,
California, which is why I sort-of recognized him, because I was there too.

I shortly found out that Ben's node hangs off a Linux box and that Consume.net
is served up by Linux and Apache as well. The connections, however, only
began there. Soon we were joined by Ben's wife Anna (whose father is Olof
Soderblom, inventor of Token Ring), and my assimilation into the Hammersley's
techno-social network began, along with a crash course on grassroots
infrastructure building that I'm sure would never proceed so quickly without
Linux and allied free and open protocols—along with resourceful hackers to
make the most of them.

For example, I learned about warwalking. The “war” in this case is not combat,
but Wireless Access Reconnaissance. Matt Jones, architect of BBC Interactive,
explained to me that warwalking was the pedestrian equivalent of wardriving,
which reportedly got its name from the movie War Games. In either case, it's
still about reconnaissance. Services like Consume.net just take some of the
work out of it.

One of the other wireless patrons at Petite Délice told me there are
downloadable scripts that will turn your laptop into something like a Geiger
counter for WiFi. That way, you can walk around town with a closed laptop in
hand, wearing headphones that make a sound when the laptop picks up WiFi
signals. Matt even showed me hand-drawn schematics for his own variant of
warwalking, called warchalking. With warchalking, hackers can use chalk to
mark local-access status on curbs and sidewalks, much as service workers use
spray paint on pavement to identify subterranean plumbing and electrical
services. A closed circle might mean the presence of a closed access point,
while an open circle (two halves, back to back) would identify an open network.

Matt plans to write this up by the time this hits print. You should be able to find
pointers somewhere amidst his main personal site, www.blackbeltjones.com.

Not that everybody is going about this in perfect harmony. One of my new
friends in London is Yoz Graheme (yoz.com), source of “Perl is Internet Yiddish”
and other memorable lines. When I asked Yoz about Consume.net's Linux
connections, he wrote back, “I think (they) are using Linux but being notoriously
closed about their code....I'm not sure of the whole story there, but I know it's
causing a fair degree of consternation.”

But Consume.net is not the only grassroots wireless movement in London.
Another high-profile effort is free2air.org (www.free2air.org), which has a global
scope with an apparently strong UK constituency. Naturally, their site is served
by Apache on Linux.

As it happens, I was in London to address some high-level civil servants on how
technologists and ordinary citizens in free markets were taking both
infrastructure and government into their own hands—using Linux and other
technology developments as examples. I spoke on my last day there, so I had a
lot to report about what was happening locally, complete with digital
photographs I had been taking since I arrived. One photo, titled “An Exploration
of Infrastructure Irony”, was a telephoto shot of the top of an idle phone booth,
with Ben Hammersley's base station in a window behind it. The entire time I
spent on Kynance Place, I saw nobody using that telephone. Meanwhile, I have
no idea how many people used Ben's node to access the Net for free—more
than a few, I'm sure.

What these hackers were producing, I pointed out, demonstrated how the Net
sees choke points as failures and routes around them. I also suggested that the
same kind of thing would be happening with governments as well. “This isn't
'power to the people”', I said. “It's power from the people”, and there is a huge
difference. The Net is made “of, by and for the people” in a very literal sense.

Much of the talk among my hacker friends in London was about politics. As
with the DMCA (Digital Millennium Copyright Act) and subsequent lawmaking in
the US, the UK has had its share of net-hostile legislation and organizations
formed to fight it. Foremost among those is STAND (stand.org.uk). Matt Jones
explains:

STAND was created by a bunch of us in early 1998 to
fight the Electronic Commerce bill, which we went
several rounds with until it became the RIP bill, and
then Act. However, in doing that, we created some
faxing technology that we knew was useful on its own,
and so created FaxYourMP as a notionally separate
entity (FYMP is determinedly nonpartisan; STAND is

http://www.blackbeltjones.com
http://yoz.com
http://www.free2air.org
http://stand.org.uk

totally single-issue lobbying—both happen to be run
by the same people). STAND went into hibernation
when RIP went through but was very recently (as in a
couple of weeks ago) brought back in a new form by
Danny O'Brien, who is one of the team, to fight the
RIPA extensions. The FYMP code is a mess of PHP,
MySQL and various other open-source things, and it
mainly runs on FreeBSD boxes. We've often thought of
opening the code, but we'd have to substantially clean
it up first, and it's way too bitty. Besides, the value is in
the setup as a whole, and it still takes regular
administration and cash to keep it running. As I said,
the software tools are free, but the things that cost are
a) the fax calls, because local calls still cost money here
and b) the data, which matches a user's postcode to an
MP, which is copyrighted and has to be bought.

After I arrived back in the US, a flurry of e-mails delivered news that the STAND
site described this way:

As most of you will already have heard, the
government has backed down from the RIP s22 Order
that would have given access to traffic data to dozens
of government departments. We thought you'd like to
know that this U-turn was largely down to you.

The FaxYourMP folk say that they relayed 1,789 faxes
from last Monday and estimate that around 1,600 of
those were related to the s22 RIP Order. That means
that, on average, every MP received at least two
messages expressing concern over the measure.

We've received mail from constituents saying that their
Member of Parliament called them directly to discuss
the issue. We've had MPs mail us with advice. We've
had TV companies and newspapers contact us after
they'd been hassled by their readers and viewers.
We've even had MPs writing letters to constituents
explaining, mournfully, that there was nothing they
could do—and then had their own voters explain to
them how to attend Standing Committee debates and
who to contact to help fight this order. Ah, those
apathetic votees.

Power from the people. It happened with the Net. It happened with Linux. It's
happening with WiFi. And it's going to happen with government too. Count on
it.

Doc Searls is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Allocation of the Risks

Lawrence Rosen

Issue #101, September 2002

Make sure software licensors actually own all the copyrights they're making you
license.

A license serves to allocate risks between the licensor and the licensee; it is an
essential purpose of license warranty provisions. The BSD license, for example,
contains the following clause:

This Software is provided by the copyright holders and
contributors “AS IS” and any express or implied
warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a
particular purpose are disclaimed. In no event shall
the copyright owner or contributors be liable for any
direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to,
procurement of substitute goods or services, loss of
use, data, or profits, or business interruption),
however caused and on any theory of liability, whether
in contract, strict liability, or tort (including negligence
or otherwise) arising in any way out of the use of this
software, even if advised of the possibility of such
damage.

(This clause was originally written in all capital letters to make sure every
licensee reads it. I find all-caps text to be unreadable, so I rewrote it here in
upper/lowercase.)

The important thing to notice is all risks under the BSD license are borne by the
licensee. No matter how dreadful the software, no matter what damage it
causes to your computer or your business, no matter what promises the
licensor advertised about the usability or functionality of the software, the
licensee accepts the software “AS IS” without any warranty.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

All other open-source licenses I've read contain similar disclaimers. The
licensee bears all the risks associated with using the software and creating
derivative works from it.

I think the above is a fair allocation of risks, except for one risk that isn't
expressly mentioned in the BSD license: the risk that the licensor isn't
authorized to grant the license to the software in the first place. The BSD
license (because of the “including, but not limited to” language) excludes this
warranty of non-infringement.

Without a warranty of non-infringement, if the licensor doesn't actually own the
copyright to the software he or she licenses or isn't acting under the authority
of a license from someone who does own the copyright, the licensee, not the
licensor, is accepting the risk of a lawsuit for copyright infringement when he or
she accepts the software.

Here's how I corrected that problem in a new license I'm writing called the
Academic Free License:

Licensor warrants that the copyright in and to the
Software is owned by the Licensor or is distributed by
Licensor under a valid current license. Except as
expressly stated in the immediately preceding
sentence, the Software is provided by the Licensor,
distributors and copyright owners “AS IS”, without
warranty of any kind, express or implied, including but
not limited to the warranties of merchantability,
fitness for a particular purpose and non-infringement.
In no event shall the Licensor, contributors or
copyright owners be liable for any claim, damages or
other liability, whether in an action of contract, tort or
otherwise, arising from, out of or in connection with
the Software.

In the first sentence of that warranty clause, the Academic Free License
allocates the risk of copyright infringement to the licensor rather than to the
licensee. Between the licensor and the licensee, I'm convinced that the licensor
is in a far better position to know whether he owns the copyright or has the
software under a license that allows him to license it to others. The licensee, on
the other hand, has no information on which to base a decision whether to
accept the risk of copyright infringement. The Academic Free License, therefore,
allocates that risk to the only party capable of determining the degree of risk.

For example, if the licensor knows he wrote the software himself, he owns the
copyright. But if he merely copied the software from someone else or created
the software while working as an employee of another company, he cannot
honestly warrant against non-infringement.

Licensees may be unwilling to accept open-source software without some
assurance from the licensor that they are not infringing. The absence of such
assurances may inhibit the acceptability of open-source software. With a
warranty of non-infringement, like the one I wrote for the Academic Free
License, licensees can rely reasonably on the license language to protect
themselves from accusations that they didn't care about who actually holds the
copyright.

What would happen if the licensor gave that warranty of non-infringement but
didn't actually own the copyright or didn't actually have a valid license to
distribute the software? Damages for breach of warranty can be substantial. In
appropriate situations, a licensee can recover for any loss resulting from the
breach, the difference between the value of the software accepted and the
software delivered, and even incidental and consequential damages.

I'm interested in your thoughts about whether open-source licenses should
include warranties of non-infringement of copyright. Please send your
comments via e-mail to lrosen@rosenlaw.com. I'll report on the results of this
informal survey in a later column.

Legal advice must be provided in the course of an attorney-client relationship,
specifically with reference to all the facts of a particular situation and the law of
your jurisdiction. Even though an attorney wrote this article, the information in
this article must not be relied upon as a substitute for obtaining specific legal
advice from a licensed attorney.

email: lrosen@rosenlaw.com

Lawrence Rosen is an attorney in private practice, with offices in Los Altos and
Ukiah, California (www.rosenlaw.com). He also is executive director and general
counsel for Open Source Initiative, which manages and promotes the Open
Source Definition (www.opensource.org).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:lrosen@rosenlaw.com
mailto:lrosen@rosenlaw.com
http://www.rosenlaw.com
http://www.opensource.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Various

Issue #101, September 2002

Love That Aass

As a longtime subscriber of Linux Journal I have noticed the beer contest, and I
have also noticed that Linux writers often make their own beers. I visited the
USA in 1998 and 1999 because our son was then an employee of Intel in
Portland, Oregon (now at RealNetworks in Seattle). In Portland, we visited the
Brewers Festival, a great happening. My favorite USA beers were India Pale Ale
from Bridgeport and Full Sail from Full Sail Brewing Company. We also visited
the Full Sail Brewing Company in Hood River, Oregon.

Here in Norway, I prefer Norwegian beer from Aass brewery, and last year I
discovered a new beer from this brewery, with Penguins on the aluminum can.
Here in Norway we call these beer cans boxes (Norwegian: boks). My favourite
beer therefore is a Linux box! So are my computers too.

With my Pine mail program and my ISDN internet connection, I will try to send
you, as an attachment, my Nikon Coolpix 950 digital image of the Aass Ice beer
can. The name Ice Beer and the Penguin logo comes from fermentation with

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

very low temperature I do not believe that the brewery has a specific interest in
the penguin as a Linux logo, but I like both Linux and this excellent Ice Beer, so
here are the penguins, for Linux Journal.

—Per Lillevold, Norway

Where Did YOU Go?

Not sure which version of SuSE you were using for your article [see Mick
Bauer's “Staying Current without Going Insane” in the July 2002 issue of LJ], but
with version 8.0, SuSE has changed things a bit. Best I can figure, YOU (YaST
Online Update) will only check, recommend and update packages that fall into
the category of security or critical updates. With older versions, YaST (the
predecessor of YaST2) did have a mode that was capable of updating other
packages. This has been removed as of SuSE 8.0, and there has been nothing
that I'm aware of that was fixed to allow YOU to perform that function. There
are a lot of users who have voiced their displeasure with this, and it is not clear
if this was done intentionally, or if it was an oversight. I've been pretty pleased
with SuSE since version 5.3, but I think there are a couple of weak areas with
8.0. I still give them the benefit of the doubt, though.

After coming to the realization that YOU wasn't gonna get things done for me, I
found that there is another project (a re-port of apt adapted to support SuSE
RPMs) afoot that is in fairly early stages, but appears to work pretty well. I'm still
figuring it out, but it does allow me to keep KDE 3.0 up to date pretty easily.
Apt4rpm works for SuSE versions 7.3 and 8.0. (See these related links:
sourceforge.net/projects/apt4rpm and linux01.gwdg.de/apt4rpm/.)

—Kevin Vosburgh

Mick replies: Sad to say (?) I'm not running SuSE 8.0 yet. My SuSE systems are
still on 7.1, so that was the version I covered in the article. Sorry for any
confusion or inconvenience this may have caused you. Truth be told, I avoid
“dot-0” releases because they tend to be, shall we say, “unripe”. SuSE's
“oversight” with regard to security vs. general updates in YaST2 is a case in
point. (At least I hope it is. If it was a design decision, I would personally
consider it to be a cynical one: as I noted in the article, stability can have
security ramifications, and even when it doesn't, providing bug fixes regardless
of security relevance is, or at least should be, an obligation of Linux packagers.)
Anyhow, on behalf of both myself and Paranoid Penguin readers, thanks very
much for the clarification and the tip about Apt4rpm!

http://sourceforge.net/projects/apt4rpm
http://linux01.gwdg.de/apt4rpm

Thanks Charles

Thank you, Charles Curley, for telling us about “Emacs: the Free Software IDE”
[see LJ, June 2002]. With the limited print “real estate” you did a great job. I
wanted you to be aware of how others have extended Emacs deep into the IDE
world.

My first comment pertains to using the Emacs spell checker private dictionary. I
was responsible for a Software Design Document on a military project. Because
all our developers wrote code using Emacs, we adopted a standard
abbreviations list, and after merging it with our vendor/military standards list
we set it up as our common private dictionary. We used the Emacs spell
checker to flag misspellings or nonstandard abbreviations or military/vendor
terminology.

My other two comments relate to GDB. In software development, testing is
important. I found the GDB user-defined functions with parameter-passing
capability to be very powerful. I have literally created test verification
documents of my software's results using Emacs and GDB. Also, in my line of
work: real-time software and basic 2-D plots of data vs. time are always
important. I wrote a simple Emacs macro to transform GDB output into a
tabular file suitable as input to gnuplot. Thus, I get quality plotting of results
while running my software via GDB within Emacs. Yes, many software
development tasks are doable using Emacs.

—Harry Rockefeller

High-Performance Computing?

I noticed on page 92 (right column, top of page) of the June 2002 issue [see
Richard Ferri's article “The OSCAR Revolution”]: “Workload management:
Portable Batch Systems (PBS) from Veridian and Maui Scheduler (developed by
Maui High Times Computing Center).” Many of my research colleagues have
been closely involved with MHPCC, and I have spent some time there. We are
all laughing our a**** off! I sent the following message to some of my research
colleagues:

In this month's Linux Journal (June 2002), there is an
article on the OSCAR open-source cluster application
effort. There is a bullet item list of tools and features
on page 92, but this one really caught my eye:
“Workload management: Portable Batch Systems (PBS)
from Veridian and Maui Scheduler (developed by Maui
High Times Computing Center).” That is not a typo in
my e-mail. The article really calls it the “Maui HIGH
TIMES Computing Center”. No doubt, the author
intended to give new meaning to the phrase “smoking
fast system performance”.

Since then, e-mails have been flying. The “suits” might not have much sense of
humor, but we folks in the trenches love it. Keep up the good work.

—Todd Torgersen

Richard replies: That was completely unintentional on my part—I really thought
I had read that name somewhere, and I thought it was a very laid-back Maui
attitude. Of course, after the article came out in print, and I reread it, I realized
my error, and I couldn't find any references to “Maui High Times” except for
completely unrelated stuff, you know—I hope everyone maintains their sense
of humor over my faux pas.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Ultimate Is in the Eye of the BogoMip Counter

Richard Vernon

Issue #101, September 2002

Fast boxes, economic machines, living in CVS and world domination.

In this year's Ultimate Linux Box article, LJ Technical Editor Don Marti explains
how you too can be the first on your block to build a machine that develops
over 9,000 BogoMips. But now that machines with processor speeds of 1-2GHz,
and even multiple processors, and gigabytes of RAM are quite common,
building the Ultimate Linux Box isn't only about sticking the fastest and the
biggest together (although that's still a lot of fun). Therefore, in addition to
making recommendations on cards, motherboards, hard drives, etc., Don takes
a look at some of the finer points of box building, such as box real estate, the
advantages of building over buying and cooling. Though it's certainly a labor of
love, Don has been working with vendors and others for many months now in
order bring you building advice that has real value, whether you're building a
computer from top-of-the-line components or one that represents a more
modest budget.

Speaking of modest budgets, in Cooking with Linux this month, Marcel takes an
alternative view of the idea of the Ultimate Linux Box, showing how you can
obtain greater speed from humble resources by lightening the software load.
He samples some lightweight software that includes a window manager with
abundant features, a web browser and office software that manage to run all
together in less than 32MB of memory.

Last month we ran an update to Charles Curley's November 2000 article on
bare metal recovery. This month, Joey Hess shows how to avoid conscious
backups all together by keeping not only your projects, but your entire home
directory, in CVS. Joey admits the idea is a sure sign of an unbalanced mind, but
that it also has many advantages, not the least of which is distributed backups.

Also in this issue, we have a report from John “maddog” Hall on his recent visit
to the state of Rio Grande do Sul, Brazil to attend the Fórum Internacional de

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Software Livre. Jon discovered that in Brazil they are taking the concept of
world domination quite seriously, and the state of Rio Grande do Sul has had
laws favoring the use of open-source software by government and business for
some time now. His article points out a number of highly worthy free software
projects.

Richard Vernon is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Going Embedded and Going Old School

Heather Mead

Issue #101, September 2002

Welcome, everyone, to a new monthly column that will highlight and point to
articles, reviews, HOWTOs and other useful and fun features on the Linux
Journal web site.

Welcome, everyone, to a new monthly column that will highlight and point to
articles, reviews, HOWTOs and other useful and fun features on the Linux
Journal web site.

New Embedded Category

We recently established a new Embedded article category for web articles that
coincides with the new Embedded section that debuted in the August 2002
issue. The first article to post in this new web category is Guylhem Aznar's
“Applications for the Sharp Zaurus”, which offers an extensive discussion about
installing software on the Zaurus PDA. Guylhem also explains how you can sync
data, flash the ROM and get on the Internet. For the full story, go to
www.linuxjournal.com/article/5902.

Most-Read Articles

Although the DeCSS legal battle over DVD encryption left many people believing
DVD playback applications for Linux were nonexistent, in “GNU/Linux DVD
Player Review”, Jonathan Kent provides an overview of four applications for this
purpose: Xine, VideoLAN Client, MPlayer and Ogle. In addition to DVD playback,
some encrypted and some not, several of these applications are extendable to
much more than DVD formats; a few plugins or downloaded libraries can get
you far. Learn how at www.linuxjournal.com/article/5644.

On a more old-school note, Jim Hatridge undertook the project of adding his
wife's “new” Compaq DeskPro 386/25e (to be fair, it is new compared to the
1987 XT it replaced) to their home network. The challenges were numerous—

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/000/5902.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/5644.html

she runs MS-DOS 5.0, but wanted only open-source software used—but using
XFS and pcnfsd, some batch files and Samba, Jim was able to set up his
machine as a fileserver to her machine. Then it was on to the next challenge—
getting the 386 on the Internet. To see how that turned out and how you could
set up something similar, go to www.linuxjournal.com/article/5837.

Most-Commented Articles

When it comes to putting articles on the web site, it's hard to gauge how
readers will respond. Therein lies the beauty of the Comments section, where
readers can post their opinions about the article's topic, debate some detail,
point out something that was overlooked (or wrong) and add their own
experiences. We were a bit surprised to see how Paul Barry's article
“Perceptions of the Linux OS among Undergraduate System Administrators”
took off with comments. Maybe we all felt a little dismayed that the next
generation of programmers and system administrators were recycling the
same “Linux is too hard to install” recitations. Take a look at what readers'
responses were at www.linuxjournal.com/article/5650.

We get a lot of submissions for Linux Journal, and due to space limitations in
print, many helpful tutorials, reviews and news items appear on the web site
instead. Articles are available on the site dating back to 1994, and new ones are
posted every day.

Heather Mead is associate editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/000/5837.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/5650.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Tech Support

Various

Issue #101, September 2002

Our experts answer your technical questions.

Perl Won't Print without a Newline

When I run a Perl script (version 5.6.0) and try to print a number, for example,
print 5;, the number will not be printed to the screen unless I include a newline
character print 5,`\n';. If I change the shell to csh or ksh, the problem goes
away. But if I set my shell to Bash or sh, the Perl script will not print the number
to the screen, but it will print a string to the screen. My question is what do I
need to change in the Bash shell to get it to work correctly with Perl?

—Blake Brezeale, blake.brezeale@bigfoot.com

You might have corrupted your Bash shell environment. In this case you can
type reset at the shell prompt and press Enter.

—Usman S. Ansari, uansari@yahoo.com

Mixed-up Compiler Versions

I'm running Mandrake 8.1, which comes with gcc 2.96. I tried updating my
compiler to 3.0.x using the Mandrake update software, and now I show parts of
gcc 2.96 installed and parts of 3.0.x installed. As a result, I can't compile
anything anymore.

—Rich Till, rtill@vetconnect.com

You should first uninstall all the gcc pieces (2.96 and 3.0.x), including libstdc and
anything that is directly dependent on gcc 2.96. When all the pieces are
removed from the system, re-install gcc 3.0.x and all the necessary pieces.
Resolve any conflicts during the gcc 3.0.x install.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:blake.brezeale@bigfoot.com
mailto:uansari@yahoo.com
mailto:rtill@vetconnect.com

—Usman S. Ansari, uansari@yahoo.com

New Red Hat Install Won't Boot

I am trying to install Red Hat Linux 7.2 on an Intel hardware machine with a DPT
VI (Adaptec) hardware RAID 5 setup. I go through the installation process okay
and partitions are created. When I finish the installation process and press
Enter to boot up, however, I get the error messages:

creating root device
mounting root filesystem
mount: error 19 mounting ext3
pivotroot: pivot_root (/sysroot, /sysroot/initrd)
 failed:2
freeing unused kernel memory: 220K freed
kernel panic: No init found Try passing init=
 option to kernel

—Byron Rendar, brendar@pcc.edu

Ted Ts'o has written a solution for this problem at: www.redhat.com/mailing-
lists/ext3-users/msg03575.html. You need to modify /etc/fstab; try mounting
the root filesystem as ext2 if it cannot mount as ext3. Change the ext3 in /etc/
fstab to ext3,ext2. (You can convert the ext2 filesystem to ext3 later.) A longer
alternate solution also is available on the web site.

—Chad Robinson, crobinson@rfgonline.com, and Don Marti,
info@linuxjournal.com

Getting On-Line with Cable

How do I connect to the Internet using digital cable? My provider is Cox in
Oklahoma City, and they do not support Linux machines. My NIC is a Realtek
8139 10/100. SuSE Linux detects the card, and it's enabled with DHCP. During
bootup my card is detected but no IP address is assigned.

—Matt Reynolds, mattreynolds@cox.net

Is your provider actually using the DHCP protocol? Some providers are
switching to PPP over Ethernet, which is not compatible. Check with your local
Cox office to be sure; Cox uses both, depending on where you are in the
country. SuSE supports PPP over Ethernet, but it's documented under ADSL or
T-DSL in the manual, and the YaST2 configuration screen is called “DSL
configuration”. Install the pppoed package, and see sdb.suse.de/sdb/en/html/
hoe_adsl_pppoe.html.

—Chad Robinson, crobinson@rfgonline.com, and Don Marti,
info@linuxjournal.com

mailto:uansari@yahoo.com
mailto:brendar@pcc.edu
http://www.redhat.com/mailing-lists/ext3-users/msg03575.html
http://www.redhat.com/mailing-lists/ext3-users/msg03575.html
mailto:crobinson@rfgonline.com
mailto:info@linuxjournal.com
mailto:mattreynolds@cox.net
http://sdb.suse.de/sdb/en/html/hoe_adsl_pppoe.html
http://sdb.suse.de/sdb/en/html/hoe_adsl_pppoe.html
mailto:crobinson@rfgonline.com
mailto:info@linuxjournal.com

Need to Set High-Numbered DHCP Options

As I work with IP-telephony (Nortel), I need to use vendor-specific codes in my
DHCP server. Is there any DHCP server out there for Linux where it is possible
to use vendor/option codes higher than those the Red Hat distribution uses?

—Bjoern Arstad, chancho@online.no

If your DHCP option code isn't supported by name, you can include it in
dhcpd.conf with:

option option-nnn 'value';

where nnn is the option code as a three-digit decimal number. See man dhcp-
options-dhcpd.

—Don Marti, info@linuxjournal.com

Ethernet Masked Ball

I would like to be able to modify the MAC ID of my Ethernet card in much the
same way I can with my Linksys router. Is there an easy way to do this?

—Mike O'Doherty, mgi1356@motorola.com

You didn't specify which Ethernet card you have; some allow this, while others
do not. If your card does allow this, you can use ifconfig as follows:

ifconfig eth0 hw ether 001122334455

For those using cable or DSL modems, note that this is a useful trick if you have
set up your service using a Windows box and want to install a Linux firewall/
gateway. Most providers track the MAC address of the workstation's Ethernet
card and can be hard to deal with if this changes. With the above command,
you can force your Linux gateway to have the same MAC address as your
original client system.

—Chad Robinson, crobinson@rfgonline.com

Touch Me, It's So Easy to Leave Me...

What is the required XF86Config-4 setup to use a Dynapro (3M) touchscreen?
Do I need to enable it with something similar to xsetpointer NFI3 after X starts?

—Shane Kennedy, skenn@indigo.ie

mailto:chancho@online.no
mailto:info@linuxjournal.com
mailto:mgi1356@motorola.com
mailto:crobinson@rfgonline.com
mailto:skenn@indigo.ie

You can find updated drivers for 3M (formerly Dynapro) touchscreens at
www.cdp1802.org/mmmtouch.

—Robert Connoy, rconnoy@penguincomputing.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.cdp1802.org/mmmtouch
mailto:rconnoy@penguincomputing.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Heather Mead

Issue #101, September 2002

Monthly new products column.

Storix Backup Administrator

Storix Backup Administrator (SBA) version 4.0 is available for system backup
and recovery of most distributions and for x86- and PPC-based systems. Using
a graphical interface, SBA provides backup management of standalone
machines or entire networks. Options are available for backup scheduling,
performance statistic reporting, overwrite and retention policies and tape
striping, among others features. SBA can restore data on the same or a
different hardware configuration, and you can recustomize your system by
changing filesystem types, adding software RAID devices and converting to LVM
partitions. All major filesystem LVMs and software RAID devices are supported.

Contact Storix Software, 3707 Fifth Avenue, Suite #125, San Diego, California
92103, 877-786-7491 (toll-free), www.storix.com.

CodeTEST for Embedded Linux

Applied Microsystems entered the embedded Linux market with the release of
CodeTEST for embedded Linux, a software test and analysis tool suite.
CodeTEST enables developers to conduct comprehensive performance testing,
memory testing, RTOS and source-code level execution trace, hardware tracing
of kernel and driver code and code coverage on applications based on
embedded Linux. CodeTEST can measure more than 128,000 real-time function
executions at once, looking for errors in algorithms, call-pair distribution and
service routines, and measures CPU consumed by functions and tasks.
CodeTEST can be purchased as a complete suite of separate modules for
performance, memory, trace coverage and advanced coverage.

Contact Applied Microsystems, PO Box 97002, Redmond, Washington 98073,
800-426-3925 (toll-free), info@amc.com, www.amc.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:info@amc.com

Rackable Systems 1U 1800

Xeon processors will power Rackable Systems' back-to-back 1U 1800 model
server. Rackable's 44U cabinets hold up to 88 1U servers and up to 176 Xeon
processors. Rackable also will be using the following new Intel products in their
servers: the SE7500CW2 server board, the SE7500WV2 server board and the
SRSH4 server platform. The new server can be used in Rackable's patent-
pending chassis, designed to allow for installation into both front and back of a
standard 19" wide, 30" deep cabinet or both sides of a two-post “Telco-style”
rack. The 1800 server comes with 8GB of memory, one to four HDDs, one PCI X
expansion port and one or two 10/100/1000 Ethernet connections.

Contact Rackable Systems, 721 Charcot Avenue, San Jose, California 95131,
408-321-0290, sales@rackable.com, www.rackable.com.

GNOME 2.0

The GNOME Foundation released version 2.0 of the GNOME Desktop and
Developer Platform, which features a faster and more powerful Nautilus file
manager and dozens of new utilities and applications. A simplified
configuration process also is in place for version 2.0. Included in this release
are an enhanced GTK 2.0 toolkit, libxml2, add-ons for Glade, Python and
CORBA, and many new libraries and widgets. Other improvements in the new
version include anti-aliasing for fonts; a dynamic, centralized configuration
system; rewritten terminal application with tabs and profiles; and a lightweight
help application called Yelp, among many others.

Contact The GNOME Foundation, www.gnome.org.

PCI-8213 and PCI-8214

The PCI-8213 and PCI-8214 are two- and four-port, 64-bit fast Ethernet cards
with bypass capability that are suitable for use in firewalls, network traffic
monitoring, on-line gaming, high-availability and Internet-dependent
applications. With bypass capabilities, during crashes and downtime the
onboard relays crosslink channels 1 and 2. Fail-safe data transmission is
achieved by linking inbound and outbound network traffic, even when the
hardware or software fails. Both boards run on a 64-bit, 33/66MHz PCI bus but
also are compatible with 32-bit PCI slots. Each Ethernet port has two self-
diagnostic LED displays to show link and 10/100 status.

Contact ADLINK Technology America, Inc., 15279 Alton Parkway, Suite 400,
Irvine, California 92618, 949-727-2077, usa@adlinktech.com, www.adlink.com.

mailto:sales@rackable.com
mailto:usa@adlinktech.com

Fax Messaging Server

Faximum Software has released Fax Messaging Server (FMS) version 2. Running
on Linux, FMS 2 integrates with existing e-mail servers and enables Linux, Mac
and Windows machines to send and receive faxes using the same tool as e-
mail. FMS 2 allows users to combine e-mail addresses and fax numbers in the
same message or e-mail group, delivers faxes to users in the same inbox as
their e-mail, can bypass the long-distance phone system and is administered
via the Web. Compatible with most distributions and most SMTP e-mail servers,
FMS 2 has been designed to work with Caldera's Volution Messaging Server and
the SuSE eMail Server III.

Contact Faximum Software Inc., 1497 Marine Drive, Suite 300, West Vancouver,
British Columbia, Canada V7T 1B8, 604-925-3600, sales@faximum.com,
www.faximum.com.

Arkeia Virtual Server

Arkeia Corporation introduced the Virtual Server, which provides local and
remote data protection services adapted especially to ISPs, telecom specialists
and cable operators. Two backup options are available: backup of customers'
servers hosted at ISPs' locations or remote backup of servers at customers'
locations to a centralized backup server hosted by the ISP. Arkeia Virtual Server
offers simultaneous site hosting, multistreaming from one host for large
volumes of data, client multiplexing, data transfers over limited bandwidth and
library sharing between hosts. Privacy is protected through dedicated access
ports, individual catalogs of backed up data, password and proxy authorization
and no shared backup mediums.

Contact Arkeia Corporation, 1901 Camino Vida Roble, Suite 200, Carlsbad,
California 92008, 760-602-8590, sales@arkeia.com, www.arkeia.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:sales@faximum.com
mailto:sales@arkeia.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/101/toc101.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Departments
	What Has 1.1 Terabytes, 9,503 BogoMips and Flies?
	Don Marti
	Processors, Motherboard and Memory
	Graphics and Sound
	What's All This about a Terabyte?
	Case and Building Hints
	Miscellany

	Coding between Mouse and Keyboard, Part I
	Patricia Jung
	Making Plans
	Designing the User Interface
	Action!
	Adding Some Code
	Important Cosmetics

	Bring an Atomic Clock to Your Home with Chrony
	Fred Mora
	Why Chrony?
	Downloading and Installing
	Stratum Conundrum
	Passwords
	Running the Client
	Automated Sync
	Conclusion

	CVS homedir
	Joey Hess

	Linux Multimedia with PD and GEM: a User's Report
	Dave Phillips
	From the Simple
	To the Complex
	Project Assessment
	Conclusion
	Acknowledgements

	Free Software in Brazil
	Jon Hall

	2002 Editors' Choice Awards
	LJ Staff
	Server Appliance: SnapGear Lite/Lite+ SOHO
Firewall/VPN Client
	Security Tool: GPG
	Web Server: IBM X-Series
	Enterprise Application Server: Zope
	Technical Workstation: HP x4000
	Web Client: Mozilla and Galeon
	Graphics Application: The GIMP
	Communication Tool: Evolution Mailer
	Consumer Software: KDE 3.0
	Development Tool: Emacs
	Database: MySQL
	Backup Software: Sistina Software's Logical
Volume Manager for Linux
	Office Application: OpenOffice 1.0
	Mobile Device: Sharp Zaurus
	Training and Certification Program: LPI
	Game: TuxRacer
	Books: Linux Device Drivers, 2nd
Edition by Alessandro Rubini and Jonathan Corbet and
The Future of Ideas: The Fate of the Commons in a
Connected World by Lawrence Lessig
	Web Site: Google
	Product of the Year: Sharp Zaurus

	Fire, Brimstone and Real-Time Linux
	Rick Lehrbaum
	VDC Sees Real-Time Linux Support
Opportunity
	The Great Real-Time Linux Debate (Redux)
	Still More on Real Time
	Red Hat “Adjusts” Its Embedded
Strategy
	Three Reviews on Hollabaugh's Embedded
Linux

	Memory Leak Detection in Embedded Systems
	Cal Erickson
	mtrace
	memwatch
	dmalloc

	In-Memory Database Systems
	Steve Graves
	Caching
	Data-Transfer Overhead
	Transaction Processing
	Application Scenario: IP Routers

	The Kernel Hacker's Guide to Source Code Control
	Greg Kroah-Hartman
	patch and diff
	New Kernel Versions
	Source Code Control
	Two Trees
	New Kernel Versions
	Other Benefits of BitKeeper
	Conclusion

	Introducing AOLserver
	Reuven M. Lerner
	History
	What Makes It So Great?
	Compiling and Configuring
	Tcl Programs
	Conclusion

	The Ultimate (but Small) Linux Box!
	Marcel Gagné

	Q&A with Chris Wysopal (Weld Pond)
	Mick Bauer

	Ultimate Machines
	David A. Bandel

	Grass Roots WiFi in London
	Doc Searls
	Linux for Suits
	The People's Infrastructure: Grass Roots WiFi in
London

	Allocation of the Risks
	Lawrence Rosen

	Letters
	Various
	Love That Aass
	Where Did YOU Go?
	Thanks Charles
	High-Performance Computing?

	Ultimate Is in the Eye of the BogoMip Counter
	Richard Vernon

	Going Embedded and Going Old School
	Heather Mead
	New Embedded Category
	Most-Read Articles
	Most-Commented Articles

	Best of Tech Support
	Various
	Perl Won't Print without a Newline
	Mixed-up Compiler Versions
	New Red Hat Install Won't Boot
	Getting On-Line with Cable
	Need to Set High-Numbered DHCP Options
	Ethernet Masked Ball
	Touch Me, It's So Easy to Leave Me...

	New Products
	Heather Mead
	Storix Backup Administrator
	CodeTEST for Embedded Linux
	Rackable Systems 1U 1800
	GNOME 2.0
	PCI-8213 and PCI-8214
	Fax Messaging Server
	Arkeia Virtual Server

